

Solar for the City of Northfield Citywide Renewable Energy Potentials Study

Final Report May 2020 Revised: July 21, 2020

Prepared by:

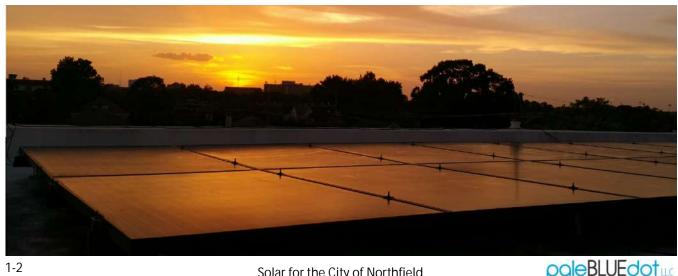
Table of Contents

Se	ection 1	Introduction
Se	ection 2	City-Wide Solar Potentials Solar in Minnesota Technical Capacity in Northfield Generation Capacity in Northfield Optimized Generation Capacity Market Capacity Economic Potential for Northfield Environmental Benefits for Northfield Community-Wide Solar Recommendations
Se	ection 3	Energy Use and Efficiency City of Northfield Buildings
Se	ection 4	Solar Feasibility City of Northfield Buildings
Se	ection 5	Solar PV Implementation Master Plan City of Northfield Buildings
Se	ection 6:	Environmental Benefits City of Northfield Buildings Solar Implementation
Se	ection 7:	Conclusions and Next Steps
A	ppendix 1	Solar Site Feasibility Reports by Building City of Northfield Buildings

Solar for the City of Northfield

The intent of this study is to determine the overall rooftop solar py potential throughout the City of Northfield as well as the solar pv capacity and energy potential of the primary City of Northfield facilities. Funding for this site assessment was provided by a 2019 Minnesota Clean Energy Resource Teams (CERTs) Seed Grant combined with funding from the City of Northfield and an in-kind donation of time and materials by paleBLUEdot LLC.

Although the energy generation numbers included in this report are based on site-specific solar exposure and efficiency ratios, the solar pv capacities and annual energy generation numbers included in this report should be considered preliminary. Final energy generation will vary based on exact solar pv components selected and installed. Additionally, the Order of Magnitude project budgets and Lifetime Cost of Solar numbers included in this report are preliminary and budgetary in nature. Final project costs may vary based on market conditions, specific pv components selected, final design decisions, changes in pv component cost basis, and inflation to the point of project implementation.


Section 2 provides an overview of the overall rooftop solar pv potential throughout the City. This section includes a look at total generation potential, optimized potential, market absorption projections, and recommended City Wide solar pv implementation goals through 2040. These "market absorption" projections are then compared against the City's solar py installation goals included in the City's Climate Action Plan and identifies potential shortfall. In addition, this section reviews the potential economic and environmental impacts of this City Wide solar pv potential and provides recommendations for next step implementation steps.

Section 3 provides a summary review of the energy use and energy efficiency of the City of Northfield facilities.

Section 4 of this report provides a detailed solar concept development, detailed assessments, opinion of probable cost, potential energy generation schedule, and potential financial performance for each of the primary government facilities within the City of Northfield. These preliminary concepts are intended to provide an initial understanding of potential for each site. Additional feasibility and assessment of sites with a low benefit to cost ratio (as outlined in Section 4 and Appendix 1 of this report) may offer opportunities to identify more cost effective approaches for those sites.

Section 5 provides recommended master plan implementation priorities for all government facilities reviewed in Section 4. This solar implementation master plan looks to guide the City to 100% renewable energy for all City facilities through the application of on-site arrays, community solar subscriptions, power purchase agreements, and purchase of renewable energy credits.

The economic and environmental benefits of the recommended City of Northfield Solar PV projects are outlined in Sections 6 and 7 of this report. Decisions regarding investment in solar pv should be certain to include all community and environmental benefits in addition to the basic financial benefit to cost ratios provided in these sections.

Lastly, Section 8 outlines conclusions as well as next step considerations for the City of Northfield.

1-2

Project Goals for City Facility Assessments and Solar PV Implementation Master Plan

The Solar PV Implementation Plan site prioritization included in this report is focused supporting the City of Northfield's goal of achieving 100% carbon-free energy for all City facilities with the option most likely to be cost effective for each site.

Renewable Energy Credits

Renewable Energy Credits (RECs) are tradable, non-tangible energy commodities that represent proof that a quantity of electricity was generated from an eligible renewable energy resource. RECs represent all of the "green" or clean energy attributes of electricity produced from renewable resources like solar PV. A REC includes everything that differentiates the effects of generating electricity with renewable resources instead of using other types of resources. Only the ultimate consumer of the REC has rights to the claim of renewable energy use; once a producer or owner of a REC has sold it, rather than consuming it themselves, they have sold the claim and cannot truthfully state that they are using renewable electricity, or that the electricity that was produced with the REC is renewable.

The City of Northfield should assume that RECs will not be available for any projects which are delivered through a "third party" project delivery method, community solar subscription, or any project which utilizes a utility subsidized approach such as the Xcel Solar Rewards program. In those project delivery methods, the City of Northfield would assume that all RECs will be purchased by the electric utility as a part of the finalized interconnection agreement.

From a Greenhouse Gas accounting perspective, this means that facilities served through community solar subscriptions or third party ownership structures will not be able to account for emissions reductions due to renewable energy use unless REC credits are purchased. In this situation, without the purchase of REC credits, the City's GHG Inventory will need to use the regional electric grid emissions factors for calculation of emissions.

Options For Meeting 100% Carbon Free Goal

In general, the carbon-free electrical service options available to the City of Northfield at each of its facilities are:

Grid Electricity

Description: Standard electricity purchased through utility produced by a range of sources within region.

Renewable Energy Claim: None.

GHG Inventory Impact:

GHG impacts are calculated at base electric grid rate for the region and utility.

Achieving Carbon Free: Can be achieved by purchasing RECs in addition

purchasing RECs in addition to electrical service (ie Xcel Renewable Connect)

Community Solar Subscription Description:

Subscription for power produced by a shared resource. REC's are sold separately.

Renewable Energy Claim: Subscribers are supporting solar. "Green attributes" remain with REC owner.

GHG Inventory Impact: GHG impacts are calculated at base electric grid rate for the region and utility.

Achieving Carbon Free: Can be achieved by purchasing RECs in addition to Subscription (ie Xcel Renewable Connect) **On-Site Solar** (Incentivized)

Description:

On-Site solar array installed under SolarRewards program through which RECs are purchased by utility for 10 years **Renewable Energy Claim:** "Green Attributes" sold to Xcel

for 10 years, then retained by site there-after.

GHG Inventory Impact:

GHG impacts are calculated at base electric grid rate for the region and utility for 10 years, Carbon-Free thereafter.

Achieving Carbon Free: Wait for conclusion of 10 year agreement with Xcel. May purchase RECs separately prior

On-Site Solar (Non-Incentivized)

Description: On-Site solar array installed under standard Net Metering agreement. RECs retained by site owner.

Renewable Energy Claim:

All "Green Attributes" retained by site owner.

GHG Inventory Impact:

All electricity produced by array is Carbon-Free energy for site.

Achieving Carbon Free: No further action required

Content In This Report

Below is an explanation of the detail or basis for the components of this report:

Concept Design

For each site, this report includes a conceptual layout of the solar pv array(s), as well as annual energy generation modeled from site-specific weather data, insolation levels, and solar obstructions. Energy generation is also provided on a month-by-month basis. A preliminary breakdown of system components is also included and forms the basis for the Order of Magnitude Project Budget.

The concepts in this report are preliminary only intended to determine an overall magnitude of potential and to assess the viability of rooftop, ground mounted, and parking mounted solar. It should be noted that many options exist for the optimization of solar arrays depending on the ultimate goal for the site.

Rooftop solar array concepts (on flat roof facilities) typically focus on maximizing the annual energy production of rooftop solar arrays through a combination of maximizing array size capable of fitting on available roof areas as well as good azimuth and tilt configurations. As such, most rooftop arrays found in this report have a panel tilt of approximately 26 - 30 degrees.

Annual Site Energy Use

For each site, an estimated value of the existing facility's annual energy use is provided. The annual energy use is based on reported annual values through the City's Minnesota B3 building benchmark reporting or 2017 City Operations Greenhouse Gas Inventory report. The EUI target values used are those provided by the US EPA ENERGY STAR Portfolio Manager. Actual on-site electricity use for each site may vary significantly depending on accuracy and completeness of the energy use reported in Minnesota B3 and the City's GHG Inventory report.

Order of Magnitude Project Budget

For each site, the Project Budget included provides a preliminary opinion of project costs based on national solar pv installation cost data provided by the National Renewable Energy Laboratory (NREL), modified for local construction cost indices. Costs shown represent 2020 dollars. Projects planned for future installation should anticipate an increase in labor costs, however, system component costs are likely to remain constant or decrease on a per kw basis. Land acquisition costs are not included in project budgets. Preliminary budgets assume cost free land use agreement for all solar arrays.

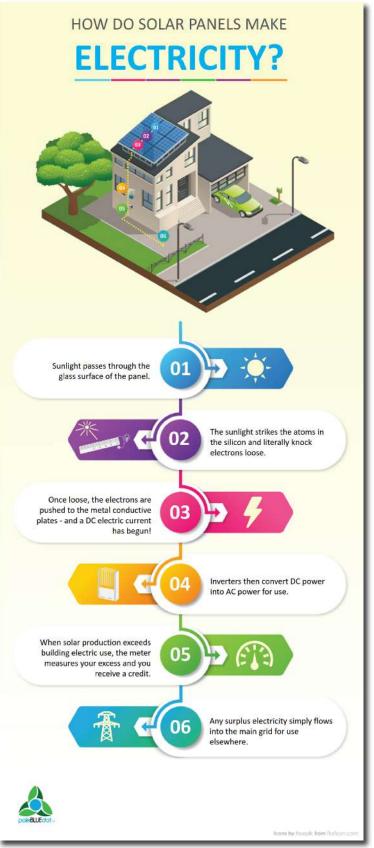
Energy Generation Schedule

All solar pv panels lose some degree of efficiency over time due to material degradation cause by unavoidable circumstances including UV exposure and weather cycles. Panel degradation and system generation losses are typically covered under panel warranty, usually at 0.7% to 1% annual losses. Studies by NREL, however, show average panel degradation rates for contemporary panels to be less than 0.5% annually. The "life span" energy generation projections included here are predicted using a 0.7% annual loss rate. Due to system loss over time, an array which meets facility annual energy need initially may, within its life span, no longer meet the same energy consumption levels. The schedule provided indicates the percentage of annual site energy use which can be met by the solar array(s) each year.

Potential Financial Performance

Based on the modeled annual energy generation, the value of the solar energy generated is calculated for each site. Estimates include the value of energy consumed on site (where such information has been provided to paleBLUEdot) as well as a preliminary estimate of the value of excess annual energy sold to the grid. Taken together, these values represent the potential life-span economic value of the solar array, which can then be compared against the estimated project costs. Note that incomes such as the feed-in tariff rates are preliminary and require confirmation with electric utilities prior to project financial finalization.

The following are additional considerations building owners should be aware of before "going solar".


Structural Capacity for Rooftop Arrays

The feasibility assessments included in this report do not include assessments of the facilities' structures to accept the additional loading of a solar pv array. Projects which anticipate rooftop arrays should have a preliminary structural assessment to confirm solar pv loading can be adequately handled by the existing structure. The weight of a PV system varies based on the panel and racking systems selected. For rooftop arrays, two racking system configurations are common: flush or tilted mechanically fastened racking types (which require roof penetrations, or clamp on standing seams); and ballasted racking types (which use weighted components to make the array stationary through gravity and typically do not require roof penetrations). A reasonable "rule of thumb" for solar PV array assembly structural loading is 2-4lbs per square foot for typical flush or tilted racking systems, or 5-9lbs for ballasted racking systems.

How Solar PV Works

Solar electricity is created using Solar Photovoltaic panels, or Solar PV for short. The word photovoltaic, or PV, comes from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The key to a solar PV panel is the semiconductor material.

Solar PV semiconductors combine properties of some metals and properties of insulators - making them uniquely capable of converting light into electricity. The simple explanation of how solar panels create electricity is that as sunlight (specifically UV light) strikes the semiconductor materials in the PV cell, the energy knocks loose electrons. Those electrons then move back and forth between semiconductor plates producing an electric current.

Net Metering

The site concepts in this report are based on grid-connected systems with net metering. Net metering tracks the amount of energy generated on site, as well as the amount of energy consumed from the grid. Net metering allows customers to get credit on their energy bill from excess energy generation, when the amount of energy a solar panel system generates is greater than the amount of energy consumed from the electric utility. Such interconnection is considered non-incentivized, meaning that the site/solar array owner will retain the renewable energy credit that the PV system produces and will offset the cost of energy needed when the solar panels are not producing energy (nighttime, short and cloudy days).

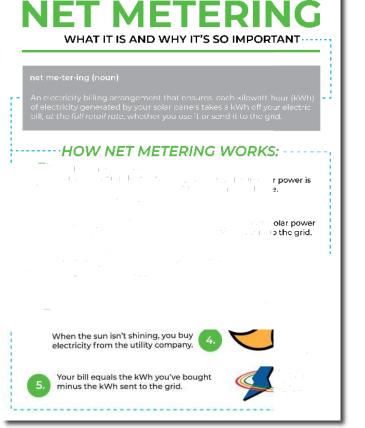
According to the State of Minnesota Public Utilities Commission:

Generally, if a customer produces more electricity than it uses, a utility will compensate or credit the customer for their excess generation depending on the option the customer elects to receive in the contract they signed with the utility. Utilities keep the rates updated in a rate book.

The amount a customer is paid for the electricity they do not use is found in their utility's tariff (often called the compensation rate). The compensation rate depends on several factors:

The size of the customer's system; The specific costs and retail rates of their utility (updated annually); and, Whether the customer is served by a cooperative, municipal, or public utility.

Learn more about Net Metering in the State of Minnesota here: <u>https://mn.gov/puc/energy/distributed-energy/net-metering/</u>


Project Delivery Options

This report assumes all solar pv systems are direct purchase (City of Northfield owned) projects. Regional solar developers may provide services to building/site owners through alternative project delivery options such as Solar Lease Agreements, Power Purchase Agreements, or "Reverse Lease" agreements for ownership of the Federal Investment Tax Credit benefits. These alternative delivery methods use 3rd party entities for one or more aspect of the procurement and ownership of the solar array and/or Federal ITC tax benefits. 3rd party project delivery methods frequently have a solar array purchase opportunity at a future date such as in year 7, year 10, or year 20. For the City, the advantage of a 3rd party project delivery is the ability to leverage project savings due to the Federal Solar Tax Credit, currently capable of reducing the cost of a solar pv by up to 30%.

Most Solar Lease Agreements are designed so that the 3rd party, or the power company, retains the RECs produced by a solar array. As such, any entity that is motivated to claim use of renewable energy or to leverage a reduction in their operating greenhouse gas emissions would typically not be capable of making such claims under these traditional 3rd party delivery structures. It may be possible, however, to negotiate a project delivery similar to a Solar Lease in which the site owner could retain the REC's generated by the project.

1-6

Peak Shaving and Demand Charges

Customers pay for electricity in one of two ways: consumption, measured in kilowatt-hours (kWh); and demand, measured in kilowatts (kW). Most residential customers only pay for consumption. Many commercial customers are on demand charge tariffs and they pay for both demand and consumption. With demand charge billing the customer pays for the highest power load reached – the peak demand. Peak demand is defined as the highest average load during a specific time interval (usually 15 minutes) in each billing cycle. Utilities use demand charges to help recover costs associated with running power plants or buying power from other utilities on the energy spot market. Demand charges also help utilities recover transmission costs to customers with large energy needs.

Not all utility customers are on demand charge tariffs, but for large consumers of electricity those charges can be a significant part of a monthly utility bill. Utility customers who do have demand charge tariffs can see a large portion of their monthly electric bill going towards demand charges (30% to 70% is not uncommon).

The most effective way to manage utility costs for customers with demand charges is a practice called peak shaving. Peak shaving involves proactively managing overall demand to eliminate short-term demand spikes, which set a higher peak. This process lowers and smooths out the electric use "curve" and reduces peak loads, which reduces the overall cost of demand charges. Solar arrays with a battery energy storage system allows customers to peak shave. Battery energy storage systems are dispatchable; they can be configured to strategically charge and discharge at the optimal times to reduce demand charges. Sophisticated control software with learning algorithms differentiates battery energy storage systems from regular batteries. These algorithms learn a customer's load profile, anticipate peak demand, and switch from the grid to batteries when needed most - reducing the customer's peak load and saving on demand charge costs.

Peak Shaving and Local Utilities

Many local electric utilities and electric co-ops do not generate their own power. Instead, these utilities often purchase power from large electric generators and then distribute that electricity to their consumers. In this situation, local electric utilities typically have long-term electric purchase agreements with their electricity suppliers. In some instances, the pricing defined in the local utility's power purchase agreement imposes increased rates for peak demand timeframes, like the peak demand rates end customers may experience. For local electric utilities which have peak power purchase rates defined, the deployment of solar arrays and solar storage systems within their local electric service area reduce the local electric grid's peak demand and avoid costs associated with peak demand power purchase.

Energy Use Intensity (EUI)

Energy Use Intensity, or EUI, is a comparable measurement for building energy efficiency. Comparing energy uses and efficiencies between buildings and structures can be difficult without a standard or benchmark. Simply measuring the amount of energy used over a given time period does not take into account building size, configuration or type of use. EUI calculations provide a means to equalize the way that energy use is compared between various types of buildings, and evaluate the means of reducing overall energy consumption.

With the EUI measurement, energy use is expressed as a function of a building's total area or "footprint". In the United States, EUI is typically expressed in energy used per square foot of building footprint per year. It is calculated by dividing the total gross energy consumed in a one-year period (expressed in kilowatt-hours or kilo-British Thermal Units) by the total gross square footage of the building.

Social Cost of Carbon

The social cost of carbon is a measure of the economic harm from climate change impacts, expressed as the dollar value of the total damages from emitting one ton of carbon dioxide into the atmosphere. The State of Minnesota Public Utilities Commission estimate the local Cost of Carbon at a range of \$9.98 to \$47.47 per metric ton of GHG emissions. The operation of Solar PV arrays provides a no-carbon source of electricity. As such, the long-term value of solar PV arrays could be seen as including the life-time avoided cost of carbon. Based on the State of Minnesota estimated cost of carbon, this would equal \$130 to \$670 in avoided community costs of carbon for every KW of solar pv installed. This value is not included in the project estimates included in this report.

1 SOLAR PANELS WILL DAMAGE MY ROOF

Fact: The solar PV cells attached to rooftops use modern materials perfected in labs. Holes need to be drilled into a roof to attach solar panels, but your roof can still be protected. Reputable solar panel installation companies follow industry best practices, like using quality flashed mounts to waterproof roof penetrations

2 SOLAR PANELS DON'T WORK IN COLD CLIMATES

Fact: If there are any daylight hours in your area, solar panels can still be effective. This is why Germany—which receives about the same amount of sunshine as Alaska—is currently a solar superpower. In fact, even though Utah is known for a long winter season, the state has enough solar power potential to provide all the electricity the U.S. needs. Solar panels are built to withstand varying temperatures, and they can produce electricity from indirect light.

3 SOLAR PANELS ARE TOXIC.

Fact: Detailed analysis indicates that the large-scale implementation of solar has the potential to reduce pollution-related environmental impacts of electricity production, such as GHG emissions, freshwater ecotoxicity, eutrophication, and particulate-matter exposure. The pollution caused by higher material requirements of these technologies is small compared with the direct emissions of fossil fuel-fired power plants

4 SOLAR ELECTRICITY HAS A HUGE CARBON FOOTPRINT

Fact: The operation of solar pv modules generating electricity do not produce greenhouse gas emissions. The manufacturing, installation, and on-going maintenance of solar PV does produce a carbon footprint – what is known as "Lifecycle emissions".

The lifecycle emissions of electricity generated by coal has a carbon footprint of 35.3 ounces per KWh generated, while electricity generated by natural gas has a carbon footprint of 17.65 ounces per KWh generated. Meanwhile, the lifecycle emissions for Solar PV equates to an average of 1.4 ounces of greenhouse gas for every kWh the panel will produce over its lifetime – a 92% reduction of emissions over natural gas and a 98% reduction of emissions over coal.

5 SOLAR ELECTRICITY DOES NOT REALLY HAVE ENVIRONMENTAL AND HEALTH BENEFITS

Fact: In the United States, the actual environmental and health benefits for every solar module (individual panel) installed is:

- 10,600 lbs of greenhouse gases eliminated
- Equivalent to 94,000 Cubic Feet of Manmade Atmosphere avoided
- 69,650 gallons of freshwater saved
- Equivalent to the annual water use of 232 households saved
 Creates more jobs: nationally, solar employs 350,000 people
- twice that of the coal industry.
 Elimination of over 5 pounds of particulate air pollution for every solar panel installed.

Solar for the City of Northfield

Section O 2

City-Wide Solar Potentials

Solar In Minnesota

As of September, 2019, Minnesota has a total of 1,287.59 megawatts (1,287,590,000 watts) of solar capacity installed statewide. Approximately 70% of that capacity went 'on-line' since early 2017, with a total of over 6,349 arrays installed. As of the end of 2019 the State of Minnesota ranked 19th nationally for total solar energy production capacity.

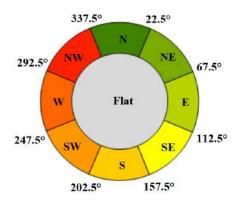
The State's solar installation total is enough to power 179,336 homes. The share of the State's total electricity use that comes from solar power, however, is less than 2.5%. This indicates great potential for growth throughout the State. Current solar growth projections for the State equal an additional 834 MW over the next 5 years - a growth rate that ranks 29th nationally.

Costs for Solar PV installation in the State have declined 70% since 2012. Price declines have been accompanied with increasing rate of investment in solar energy. A total of \$1,914,200,000 has been invested in Solar PV installations with \$558,260,000 in 2018 alone. The industry currently employs 4,602 people in 209 companies Statewide. Minnesota employment figures for Solar PV rank 17th nationally, again indicating a potential for employment growth.

(source: Solar Energy Industries Association, Solar Foundation)

Based on 54% data coverage over buildings throughout the State, 71% of all buildings in Minnesota are solar-viable. Generation potential estimates are based on buildings viable for solar panels. Panels included in energy generation calculations receive at least 75% of the maximum annual sun in the county. For Minnesota, the average value of the threshold is 985 kWh/kW.

(source: Project Sunroof, data through 11/2018)



Methodology and Data

This section calculates the total technical capacity and total generation potential for rooftop solar in the City. Total solar PV potential was calculated based on the following input, data, and methodology:

Input Data

Roof plane survey data is provided by National Renewable Laboratory (NREL). NREL data is based on lidar data obtained from the U.S. Department of Homeland Security (DHS). Insolation levels for annual sun exposure are based on data from NOAA and NREL.

Azimuth Classifications

Estimated System

Losses by Azimuth					
Flat	22.00%				
South	26.21%				
West/SW	32.60%				
East/SE	33.98%				

Estimated System Losses by Roof Tilt based on System Advisor Model (SAM) Assessment

(SAIVI) ASSESSITIETIL	
flat (tilted rack)	0%
low angle	-9%
Mid Low Angle	-6%
Mid High Angle	0%
High Angle	-4%

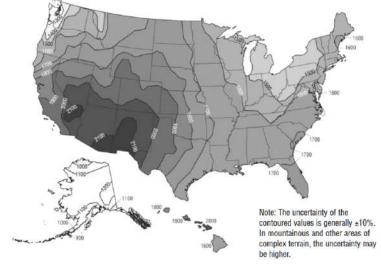
paleBLUEdotuc

Tilt and Azimuth

The orientation (tilt and azimuth) of a roof plane is important for determining its suitability for PV and simulating the productivity of installed modules. For this study roof plane tilt for each square meter of roof area within zip code 55057 was determined using the lidar data set. Roof tilts are organized into 5 categories:

$(0^{\circ} - 9.5^{\circ})$
(9.5°- 21.5°)
(21.5° – 34.5°)
(34.5° – 47.5°)
(47.5° and higher)

For this study, the second component of roof plane orientation -the azimuth (aspect) – was identified for each square meter of roof area. Each square meter was categorized into one of nine azimuth classes, shown in the graphic to the right, where tilted roof areas were assigned one of the eight cardinal and primary intercardinal directions.


All roof planes with Northwest, North, and Northeast azimuths were excluded from this study.

Generation Potential

The potential "Nameplate capacity" potential per square foot of roof plane area was calculated. This calculation assumed a typical 350 watt capacity panel with a footprint of 79" x 40".

Next, this nameplate capacity was adjusted for assumed system losses including shading, heat loss, mismatch, snow, dirt, etc. Assumed losses were calculated for each azimuth orientation and rage from 22% system loss for flat arrays to 34% for East/Southeast orientations. Additionally, losses were calculated for roof tilt classifications based on the System Advisor Model.

Lastly, generation potential was calculated using the base Energy Production Factor for the region (annual KWH production/KW nameplate capacity), modified by the loss factors outlined above. The Energy Production Factor is based on NREL data as illustrated below.

National Solar PV Energy Production Factors

Technical Capacity In Northfield

Technical capacity represents the total rooftop solar pv potential assuming economics and grid integration are not constraints. Based on the input and methodology previously outlined, there are an estimated 7,528 total buildings in Northfield, of those, it is estimated that 6,980 are "solar suitable" buildings.

These solar suitable buildings have an estimated 11,911 roofplanes which are either flat or with an azimuth orientation of East, Southeast, South, Southwest, or West, with a total estimated square footage of 3.8 million square feet. The chart below shows a further breakdown of roof orientation by roof tilt classifications as well. The potential installed technical energy capacity for all rooftops meeting selection criteria totals 65 Megawatts DC.

Generation Capacity In Northfield

Generation capacity represents the total amount of energy generation potential of the total Technical Capacity of the City. As previously outlined, the generation capacity is calculated using City-specific annual energy production factor (annual KWH production/KW nameplate capacity) which is based on the region's weather patterns and annual insolation levels (exposure to sun's energy). This energy production factor is then modified by estimated system losses by azimuth and estimated system losses by roof tilt (see page 2-3).

The chart below illustrates the total generation potential by roof azimuth and by roof tilt classifications. The Grand Total solar PV energy generation potential for the City is 65,085,866 KWH annually, approximately 25% of the City's total electric consumption (based on US Energy Information Agency data, City of Northfield Greenhouse Gas Inventory).

			Flat		Low Tilt		Mid-Low Tilt		Mid-High Tilt		High Tilt	
Subtotal Flat												
Suitable Buildings	1,239	19.14%	1,239		0		0		0		0	
Suitable Roof Planes	2,280	19.14%	2,280		0		0		0		0	
Square Footage	720,772	19.15%	720,772		0		0		0		0	
Capacity (KW dc)	11,496	19.15%	11,496		0		0		0		0	
Generation (KWH)	14,346,829	22.04%	14,346,829		0		0		0		0	
Subtotal South Facing												
Suitable Buildings	1,853	28.62%	0		429		1,179		243		1	
Suitable Roof Planes	3,409	28.62%	0		789		2,170		448		2	
Square Footage	1,077,940	28.64%	0		249,450		686,079		141,683		728	
Capacity (KW dc)	17,192	28.64%	0		3,979		10,943		2,260		12	
Generation (KWH)	19,099,735	29.35%	0		4,274,528		12,144,088		2,667,962		13,157	
West + Southwest												
Suitable Buildings	1,679	25.93%	0		293		1,081		303		2	
Suitable Roof Planes	3,089	25.93%	0		539		1,989		558		3	
Square Footage	976,768	25.95%	0		170,403		628,793		176,480		1,092	
Capacity (KW dc)	15,579	25.95%	0		2,718		10,029		2,815		17	
Generation (KWH)	15,887,234	24.41%	0		2,667,195		10,166,500		3,035,511		18,028	
East + Southeast												
Suitable Buildings	1,703	26.30%	0		272		1,125		303		3	
Suitable Roof Planes	3,133	26.30%	0		500		2,070		558		5	
Square Footage	988,503	26.26%	0		157,990		654,397		174,506		1,610	
Capacity (KW dc)	15,766	26.26%	0		2,520		10,437		2,783		26	
Generation (KWH)	15,752,067	24.20%	0		2,422,236		10,363,724		2,940,064		26,044	
			Subtotal: Flat		Subtotal: Low		Subtotal: Mid-		Subtotal: Mid-		Subtotal:	
Grand Total			Roof		Tilt		Low Tilt		High Tilt		High Tilt	
	C 474								-		-	
Suitable Buildings	6,474		1,239	19.14%	994	15.35%	3,385	52.30%	850	13.13%	5	0.089
Suitable Roof Planes	11,911		2,280	19.14%	1,828	15.35%	6,229	52.30%	1,564	13.13%	10	0.089
Square Footage	3,763,983		720,772	19.15%	577,843	15.35%	1,969,270	52.32%	492,669	13.09%	3,430 55	0.099
Capacity (KW dc)	60,033		11,496	19.15%	9,216	15.35%	31,409	52.32%		13.09%		0.099
Generation (KWH)	65,085,866		14,346,829	22.04%	9,363,959	14.39%	32,674,312	50.20%	8,643,537	13.28%	57,229	0.099

Generation Capacity In Northfield

Optimized Generation Capacity In Northfield

Though the total energy generation outlined above is reasonably feasible, for purposes of establishing City-Wide potentials expectations it is appropriate to modify the total generation to reflect the likely most cost efficient installation potentials given current technologies and cost parameters. Solar PV installations which have less than ideal orientations capture less light per panel and therefore generate less energy per dollar spent. Establishing an Optimized Capacity establishes the cost effective solar pv installation potential based on current technology.

Identifying the installations most likely to be highly cost effective ultimately requires a site-by-site assessment, however, typical installation performance characteristics can be extrapolated to establish reasonable city-wide estimates. For the latitude and geography of Northfield, it can be assumed that all solar suitable roof planes that are flat or south facing should ultimately be reasonably cost effective installations.

For West and Southwest facing roof planes, it is likely that all low and mid-low roof tilt installations would be cost effective, while mid-high and high roof tilt installations with West or Southwest orientation may produce self-shading for many of the solar productive hours making those installations viable on a case-by-case basis. Like wise, for East and Southeast facing roof planes, it is likely that all low roof tilt installations would be cost effective, while mid-low, mid-high, and high roof tilt installations facing East may produce self-shading, making those installations also viable on a case-by-case basis.

On the chart below, all solar suitable roof planes with roof tilt and azimuth orientation combinations likely to be consistently cost effective are shown and are considered to be the City's Optimized Generation Capacity. It should be noted that installations outside of these selections may still be cost effective but require individual feasibility assessment. The total Optimized Generation Capacity in Northfield is estimated to be 48,702,495 KWH annually, approximately 18.65% of the City's total electric consumption.

			Flat		Low Tilt		Mid-Low Tilt		Mid-High Tilt		High Tilt	
Subtotal Flat												
Suitable Buildings	1,239	26.16%	1,239		0		0		0		0	
Suitable Roof Planes	2,280	26.16%	2,280		0		0		0		0	
Square Footage	720,772	26.15%	720,772		0		0		0		0	
Capacity (KW dc)	11,496	26.15%	11,496		0		0		0		0	
Generation (KWH)	14,346,829	29.46%	14,346,829		0		0		0		0	
Subtotal South Facing												
Suitable Buildings	1,853	39.11%	0		429		1,179		243		1	
Suitable Roof Planes	3,409	39.11%	0		789		2,170		448		2	
Square Footage	1,077,940	39.11%	0		249,450		686,079		141,683		728	
Capacity (KW dc)	17,192	39.11%	0		3,979		10,943		2,260		12	
Generation (KWH)	19,099,735	39.22%	0		4,274,528		12,144,088		2,667,962		13,157	
West + Southwest												
Suitable Buildings	1,374	29.00%	0		293		1,081					
Suitable Roof Planes	2,528	29.00%	0		539		1,989					
Square Footage	799,196	29.00%	0		170,403		628,793					
Capacity (KW dc)	12,747	29.00%	0		2,718		10,029					
Generation (KWH)	12,833,695	26.35%	0		2,667,195		10,166,500					
East + Southeast												
Suitable Buildings	272	5.74%	0		272							
Suitable Roof Planes	500	5.74%	0		500							
Square Footage	157,990	5.73%	0		157,990							
Capacity (KW dc)	2,520	5.73%	0		2,520							
Generation (KWH)	2,422,236	4.97%	0		2,422,236							
			Subtotal: Flat		Subtotal: Low		Subtotal: Mid-		Subtotal: Mid-		Subtotal:	
Grand Total			Roof		Tilt		Low Tilt		High Tilt		High Tilt	
Suitable Buildings	4,738		1,239	26.16%	994	20.97%	2,260	47.71%	243	5.14%	1	0.02%
Suitable Roof Planes	8,717		2,280	26.16%	1,828	20.97%	4,159	47.71%	448	5.14%	2	0.02%
Square Footage	2,755,897		720,772	26.15%	577,843	20.97%	1,314,872	47.71%	141,683	5.14%	728	0.03%
Capacity (KW dc)	43,955		11,496	26.15%	9,216	20.97%	20,971	47.71%	2,260	5.14%	12	0.03%
Generation (KWH)	48,702,495		14,346,829	29.46%	9,363,959	19.23%	22,310,588	45.81%	2,667,962	5.48%	13,157	0.03%

Optimized Generation Capacity In Northfield

Market Capacity

Adequately anticipating the potential for new solar PV installations must consider not only the potential technical and generation capacities, but also the likely market capacity. As an emerging energy sector, there is little data upon which to base projections for likely installation of rooftop solar PV in the private sector. Additionally, the solar PV market is rapidly changing in both sophistication as well as in pricing and cost effectiveness. As noted in the Solar in Minnesota section of this report, the installed cost of solar PV in Minnesota has dropped 70% since 2012 and is expected to continue to decline in the coming years. Projections of solar PV installations should anticipate a continued increase in the number of solar pv installations year over year.

Market History

According to the Department of Energy, since 2005 the residential solar PV market has grown at an annual rate of 51%. A growth rate that has resulted in a residential solar PV capacity 95 times larger in just 12 years. In the State of Minnesota, the new installed capacity that went on line in 2016 was 258.9 MW; equal to 150% of the cumulative total of all solar PV installations in the state for all previous years. According to the City's Climate Action Plan appendix reports, in the City of Northfield, there are a total of 81 existing solar PV installations totaling 554 KW capacity, approximately 1.28% of the State total number of installations, or 0.04% of total generation capacity (compared to the City of Northfield's population at 0.36% of State total). These numbers indicate the City of Northfield's solar pv adoption rates are approximately 3 times higher than the State average adoption rates, however, the average array size is a fraction of the average array size in the State.

State Market Projections

The Solar Energy Industries Association (SEIA) projects solar PV installation capacity in the State to increase 834 MW by 2024. This is equal to a sustained increase of installed capacity of 12.9% annually. The timeframe of this projection overlaps partially with the currently established Federal Income Tax incentive program. For years 2022 and beyond, the tax incentive is expected to be phased out for residential solar pv installations, but a smaller incentive (10%) will remain for commercial property owners while cost projections anticipate a continued decrease in installation costs.

paleBLUEdotuc

Northfield Market Absorption Projections

Scenario A: Maintaining Current City Adoption Rate and Average Array Size (6.8 KW)

Simply anticipating the City's share of additional solar installations within the state over the next 5 years by maintaining the City's current adoption rate (1.28% of State installations and 0.04% of installed generating capacity) with an assumed maintained average array size of 6.8 KW would mean an increase of 359 KW of installed capacity within the City by 2024, for a total of 913 KW citywide. This is equivalent to approximately 1.5% of the total rooftop technical capacity potential or 2.1% of the optimized capacity potential within the City.

As the market continues to mature through the 2020's it may be reasonable to assume a reduction in the growth rate of new installed capacity beginning in year 2031. For purposes of this study, we recommend a 50% reduction of the annual rate of growth for 2030. This would result in a growth rate of 12.9% through 2030 and a 6.5% growth rate for years 2030 through 2040. The chart below shows projections through 2040 using the assumed Statewide growth rates and maintaining the City's current adoption rates and average array sizes.

	io A: Northfield Roofto bsorption Maintaining	•			
		Size (6.8 KW)	,		
Year	Cumulative Installed (KW)	Annual Generation (KWH)	% of City Electric Consumption	This is Equivalent to adding (x) Average Residential Arrays Annually:	Or Equivalent to adding (x) Commercial Arrays Annually:
2024	913	989,667	0.38%	13	2.2
2030	1,900	2,060,439	0.79%	24	4
2040	3,917	4,246,631	1.63%	30	5

This projection indicates a significant shortfall from the City's current goal of 10% on-site solar by 2030 and 20% on-site solar by 2040 as established in the City's Climate Action Plan.

paleBLUEdot LLC

Northfield Market Absorption Projections

Scenario B: Based on Potential Market Absorption and Increasing City Adoption Rate to Population Share (measured by KW installed)

As noted earlier, the City of Northfield has a higher than State average adoption rate in terms of number of arrays installed per capita, but a *lower* than State average in terms of generating capacity (KW) installed per capita. If it is assumed that the City's future solar adoption rate, when measured by KW installed per capita, to match the State average over the next 5 years, it would mean an increase of 2,998 KW of installed capacity within the City by 2024 for a total of 3,552 KW citywide. This is equivalent to approximately 5.9% of the total rooftop technical capacity potential or 8.1% of the optimized capacity potential within the City.

As the market continues to mature through the 2020's it may be reasonable to assume a reduction in the growth rate of new installed capacity beginning in year 2031. For purposes of this study, we recommend a 50% reduction of the annual rate of growth for 2030. This would result in a growth rate of 12.9% through 2030 and a 6.5% growth rate for years 2030 through 2040. The chart below shows projections through 2040 using the assumed Statewide growth rates and increasing the City's current adoption rates and average array sizes.

	Cumulative Installed (KW)	Annual Generation (KWH)	% of City Electric Consumption	This is Equivalent to adding (x) Average	Or Equivalent to addin (x) Commercial Arrays
Year				Residential Arrays Annually:	Annually:
2024	3,552	3,850,992	1.47%	110	18.7
2030	7,395	8,017,579	3.07%	94	16
2040	15,242	16,524,484	6.33%	115	20

Northfield Market Absorption Projections

Scenario C: Adoption Rate Required to Meet City's Climate Action Plan Goals (measured by KW installed)

As noted in Scenarios A and B, neither of those potential market absorption rates will reach the level of solar pv adoption needed to meet the 2030 and 2040 on-site solar goals included in the City's Climate Action Plan. The Scenario below illustrates the needed solar adoption rates to meet these goals.

This Scenario would result in an annualized growth rate of 400% through 2024, a 26% annual growth rate for years 2025-2030 and a 10% annual growth rate for years 2030 through 2040. The total solar pv installed by year 2040 would equal nearly 100% of the currently available optimal rooftop generating capacity.

	•	ate Action Plan Goals red by KW installed)			
Year	Cumulative Installed (KW)	Annual Generation (KWH)	% of City Electric Consumption	This is Equivalent to adding (x) Average Residential Arrays Annually:	Or Equivalent to adding (x) Commercial Arrays Annually:
2024	9,412	10,204,165	3.9 1%	326	55.4
2030	24,084	26,111,041	10.00%	503	86
2040	48.168	52.222.081	20.00%	600	102

Economic Potential

As with all energy sources, solar PV installations require investment up-front for construction and installation as well as annual maintenance costs. When measured on a per unit of energy consumed, these costs are similar, or more competitive than, the costs associated with other energy sources. Unlike almost all other forms of electricity, however, a significant portion of the initial and on-going costs associated with solar PV are capable of remaining in the local economy. This means that for communities who plan carefully for the increase in renewable energy, a local economic development potential exists.

Economic Potential for Northfield

According to the National Renewable Energy Laboratory (NREL), the 15.97 MW of additional solar pv capacity which could be installed in the City by 2040 under Scenario B has a total construction value of \$39 million (2020 dollars). The potential share of those investments for the local economy totals 50 jobs and \$16 million in local income potential during construction and 10 jobs and \$680,000 in local income potential for maintenance annually through the lifetime of the installations. Below is a breakout of the Northfield Economic Development potential of new installed solar pv capacity through 2040 based on the Scenario B market absorption projection numbers:

	Jobs	Earnings	Output	Value Addec
During construction period		Million\$ 2020	Million\$ 2020	Million\$ 2020
Project Development and Onsite Labor Impacts	18	\$2.45	\$3.34	\$2.73
Construction and Interconnection Labor	11	\$2.11		
Construction Related Services	6	\$0.34		
Equipment and Supply Chain Impacts	18	\$1.16	\$4.72	\$2.33
Induced Impacts	15	\$0.92	\$2.54	\$1.38
Total Impacts	50	\$4.53	\$10.60	\$6.44
	Annual	Annual	Annual	Annual
	Jobs	Earnings	Output	Output
During operating years (annual)		Million\$ 2020	Million\$ 2020	Million\$ 202
Onsite Labor Impacts	7	\$0.50	\$0.50	\$0.50
Local Revenue and Supply Chain Impacts	1	\$0.09	\$0.26	\$0.17
Induced Impacts	1	\$0.10	\$0.27	\$0.15
Total Impacts	10	\$0.68	\$1.03	\$0.81

Additional Economic Benefit

In addition to the local re-investment share of the construction and maintenance costs, Northfield residents and business owners who invest in solar PV will have direct economic benefit in the form of savings. These savings represent increased economic potential within the City and include:

- 1) All residents and businesses who install solar PV prior to the phase out of the Federal Tax Incentive will be able to save 10-26% of the cost of installation. At the projected additional installation through 2022 outlined in the previous section, this could mean \$675,000 up to \$1.17 million in savings and local re-investment potential.
- 2) Many owners who install solar pv see a decrease in their annual energy costs (including solar pv project finance costs). Though savings vary, a reasonable estimate of the out-of-pocket savings for residents and businesses in Northfield is \$38,000 to \$75,000 annually by 2022 (assuming third party ownership structure or community solar subscriptions, long-term savings for direct ownership can be significantly higher)

Environmental Benefits for Northfield

The core environmental benefits of Solar PV electric energy generation relate to improved air quality, reduced greenhouse gas emissions, and reduced water consumption.

The Water/Energy Nexus

electricity by fuel type is as follows:

Water and energy are inextricably linked in our current

energy production. Energy is required to extract, pump

be safely returned to the environment. The cumulative

River Network, the average fresh water use for 1 Gwh of

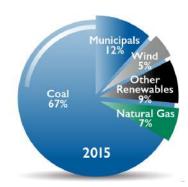
impact of electricity generation on our water sources can

be significant, and varies by fuel source. According to The

Gallons/GWh 29,920,000 1,000 2,995,000 2,000 2,000 2,000 1,512,000 7,143,000

and deliver water for use, and to treat waste-water so it can

modern infrastructure. Water is used in all phases of


Greenhouse Gas and Electricity

Greenhouse gas emissions form, primarily, from the burning of fossil fuels. The carbon footprint of electricity is the total greenhouse gas emissions throughout the lifecycle from source fuel extraction through to end user electricity. According to the Intergovernmental Panel on Climate Change (IPCC), the median greenhouse gas emission, measured in metric tonnes, for 1 Gwh of electricity by fuel type is as follows:

Electricity Source	Metric Tonnes	
	GHG/GWh	Electricity Source
Hydroelectric	4	Hydroelectric
Wind	12	Wind
Nuclear	16	Nuclear
Biomass	18	Biomass
Geothermal	45	Geothermal
Solar PV	46	Solar PV
Natural gas	469	Natural gas
Coal	1001	Coal

Current Northfield Electric Grid Profile According to the US EPA, based on the Electricity Supply by Energy Source for their Upper Midwest region, the average greenhouse gas emissions per 1 Gwh of electricity is 365 Metric Tonnes. Using the River Network average fresh water use by fuel type, the average water use per 1 Gwh or electricity in Northfield is 5,306,500 gallons.

Based on these numbers, by 2022 under Scenario B, the additional solar pv installed in the City of Northfield can reduce its Greenhouse Gas emissions by 1,406 metric tonnes (27,889,310 cubic feet of man-made greenhouse atmosphere), and its water footprint by 20.43 Million Gallons.

Dairyland Electric Electric Fuel Mix

			tprint Reduction Poten ng City Adoption Rate to Popu	
	Annual Generation (GWH)	GHG Emission Reduction (mTons)	GHG Emission Reduction (Cubic Feet	Water Footprint Reduction (Mgallons)
Year	(GMI)	neduction (intons)	of Atmosphere)	neutron (mganons)
2024	3.85	1,406	27,889,310	20.43
2030	8.02	2,926	58,064,198	42.53
2040	16.52	6,031	119,672,146	87.65

Community-Wide Solar Recommendations

In support of the City's on-site solar goals included in its Climate Action Plan (10% generation by 2030, 20% by 2040) we recommend the following:

 Maximize new installations in years 2020 and 2021 for both Residential and Commercial scale projects in order to leverage the greatest potential for local cost savings from the Federal Solar Investment Tax Credit. Actions to support this include:

a) Develop and distribute information on the advantages of solar with a particular focus on the current tax incentive savings available for both homeowners and businesses. Information should also include detailed information on the advantages of Xcel Solar Rewards program and opportunities for financing such as MNPACE.

b) Develop and provide a solar benefits educational seminar for residents and businesses, content to include information on the tax incentive savings potential as well as tools and resources for solar procurement and financing.

c) Organize and lead a Commercial Group Purchasing campaign in 2020 and 2021 to competitively bid contractors to offer maximum cost savings based on power of quantity buying. This program could be combined with City facilities. Program should explore the inclusion of cash purchase as well as third party purchase options.

d) Organize and lead a Residential Group Purchasing campaign in 2020 and 2021 to competitively bid contractors to offer maximum cost savings based on power of quantity buying.

e) Develop and distribute a "Solar Ready Guide" outlining steps building owners can take for new construction and renovation projects to make buildings solar ready and decrease the cost of future installations.

f) Establish a requirement that all City owned new construction projects and significant renovation projects as well as any projects which receive City funding are to be Solar Ready.

g) Establish a requirement that all City owned new construction projects and significant renovation projects as well as any projects which receive City funding are to include a detailed solar feasibility assessment with projected financial payback (cash purchase and 3rd party ownership options) to be included at time of building permit application. (Strategy encourages awareness of solar potential and potential long-term economic savings)

h) Promote PACE program utilization for initial project financing.

Community-Wide Solar Recommendations (continued)

Maximize new installations in years 2022 and beyond. Actions to support this include:
 a) Become a SolSmart Community Gold level

b) Establish an incentive for all privately owned new construction projects and significant renovation projects that are designed to City's Solar Ready Guidelines (incentive may include credit on building permit application and/or expedited permit processing)

g) Establish a requirement that new construction projects and significant renovation projects within the City (private and publicly owned) are to include a detailed solar feasibility assessment with projected financial payback (cash purchase and 3rd party ownership options) to be included at time of building permit application. (Strategy encourages awareness of solar potential and potential long-term economic savings)

h) Promote PACE program utilization for initial project financing.

I) Coordinate with County to explore the development of new incentive programs, particularly those aimed at low and moderate income residents. Program opportunities may include development of LIHEAP (Low Income Home Energy Assistance Program) based funding sources.

j) Conduct a Green Economy Business and Economic Development Potentials study to identify strategies in leveraging economic opportunities in the Green Economy and emerging renewable energy field. Study should focus not only on national, state, and metro area trends, but should identify strengths, weaknesses, opportunities, and threats unique to Northfield. The goal of establishing a robust business atmosphere capable not only of serving Northfield renewable energy and green economy needs but fulfilling a unique economic niche within the region.

3) Identify and develop quality large array locations to support faster solar PV adoption. Actions to support this include:

a) Conduct a study to identify ideal ground mounted solar pv array sites. Ideal sites will be locations adjacent to large energy consumers and sites without "higher and better" uses. Potentials may include sites such as capped landfill locations. Arrays should be directly tied to single offtaker, or development designed to retain REC's within the community.

B) Conduct a study to identify ideal "car port" solar arrays (solar arrays mounted on structures over surface or structured parking locations), particularly at large surface parking locations. Arrays should be directly tied to single offtaker, or development designed to retain REC's within the community.

Section 03

Energy Use and Efficiency City of Northfield Buildings

Energy Use and Efficiency - City of Northfield Buildings

The initial facility reviews conducted on the City of Northfield buildings as a part of this Solar Master Plan was a review of each facility's energy use history. The total annual electric use and overall building energy use (including natural gas) was identified, recorded, and reviewed. The data reviewed and recorded in this report was obtained through the City's B3 Benchmarking account as well as City provided utility billing histories.

Understanding both total electric use and overall energy efficiency of a building are important first steps in prioritizing buildings to receive solar pv for a number of reasons:

Annual Electric Use

One of the important considerations when considering the appropriateness of installing on-site solar pv is the subject building's overall electric use. At the most base level, the amount of electricity consumed each year by a given building establishes the size of the array most appropriate for a site and is the foundation of the array's economic payback calculations.

Overall Energy Efficiency

paleBLUEdot has conducted a high-level review of the City of Northfield's facility energy use against the regional database of peers available through the B3 database, as well as the national database of peers available through the US EPA ENERGY STAR database. From this review, we have identified those buildings which perform above average in energy efficiency. See Table 3.1 for a review of the energy use and energy efficiency comparison against State and National peer groups. Buildings highlighted in light orange perform better than average against State peer groups, while buildings highlighted in light blue perform better than National peer groups. Buildings highlighted in red significantly under perform compared to State or National peer groups.

Improving Performance

In general, this report recommends that any building with a Peer Rating (percentile performance level) of 65 or less receive an energy and building envelope audit to identify opportunities for improved energy efficiency.

General Information	Electric Use Data							Peer Comparison				
Name	Period	SF	Electric kWh	Total Electric Dollars	Electric Demand Dollars ** (Estimated)	Demand Share of Cost (%)	ENERG STAR Sc (Percent		Number MN of Peers	*** Site EUI	High Performance EUI (75th Percentile)	
City Hall	2019	25004	191,574	\$19,271.63	\$5,412.00	28.1%	73	51	1,093	56.9	50.7	
Police Department	2019	20000	199,070	\$20,226.63	\$4,656.00	23.0%	28	25	20	91.2	50.7	
Wastewater Treatment Plant	2019	1	3,584,843	\$264,632.16	\$45,696.00	17.3%	8	21	42	23,663.1	N/A	
Water Department Office	2019	7500	225,011	\$28,520.71	\$11,328.00	39.7%	N/A	31	1,093	154.9	50.7	
Northfield Community Resource Center *	2019	58000	545,280	\$62,611.00	\$11,451.00	18.3%	N/A	N/A	N/A	32.1	14.0	
Outdoor Pool/Old Memorial field	2019	0	105,600	\$12,529.00	\$1,834.00	14.6%	N/A			N/A	N/A	
Ice Arena	2019	30000	582,055	\$59,208.53	\$20,016.00	33.8%	N/A	3	67	91.1	14.3	
Maintenance Facility	2019	24960	65,553	\$7,420.26	\$2,652.00	35.7%	N/A	71	109	33.7	10.4	
Liquor Store	2019	4400	119,812	\$34,751.15	\$221.00	0.6%	N/A	13	439	122.8	16.8	
Northfield Area Fire & Rescue *	2019	0	153,270	\$15,987.00	\$4,224.00	26.4%	N/A			35.6	18.7	
Grand Total		169,865	5,772,068	\$525,158	\$107,490	20.5%						

Table 3.1: Summary of Energy Use and Energy Efficiency Comparison to Peer Groups

* Facility owned by City of Northfield but operated by others or through joint partnership.

- ** Customers pay for electricity in one of two ways: consumption, measured in kilowatt-hours (kWh); and demand, measured in kilowatts (kW). Demand charges are fees applied to the electric bills of commercial and industrial customers based upon the highest amount of power drawn during any (typically 15-minute) interval during the billing period. Demand charges can comprise a significant proportion of commercial customers' bills. See Section 1 for additional information.
- *** EUI stands for Energy Use Intensity. It is the energy use per square foot at a property (energy divided by square foot). EUI enables you to compare different sized buildings. See Section 1 for additional information.

Section Old

Solar Feasibility City of Northfield Buildings

The goal of the solar feasibility concept development is to explore the general potential for solar pv on each site with the goal of achieving a Zero Net Energy site (a site which generates as much electricity within a year as it consumes within the same timeframe).

Prioritization was given to rooftop solar arrays, with ground mounted and "carport" arrays being included only for sites which required them to achieve Zero Net Energy, or for building sites which can reasonably be assumed to have a structure incapable of supporting a rooftop array. Prior to proceeding further with the planning of any rooftop solar pv array, an assessment of the structure of each building included in this section should be conducted. All sites which have a ground mounted array in this section should have a civil engineering review of the site areas anticipating solar arrays to verify appropriate soil and site conditions.

A preliminary opinion of cost as well as a preliminary 30 year energy generation and value projection have been developed for each site. Costs are intended to illustrate Order of Magnitude and are preliminary in nature. Cost unit prices are based on 2017 national averages provided by the National Renewable Energy Laboratory, modified using local construction cost indicies. The 30 year value projections include estimates of base and solar buy back electric rates based on information available from the subject utility. Electric rates should be validated prior to proceeding further with the planning of any site.

Solar Feasibility Assessment

The detailed Solar Feasibility Assessment for each of the sites can be found in Appendix 1 of this report. The Solar Feasibility Assessment included a review of overall solar feasibility as well as development of solar pv concept designs for each recommended site. These efforts consisted of:

Determining the feasibility of solar energy :

- Conducting remote review of each recommended site using satellite data of each subject building and site.
- Identifying current and planned future building and site conditions which create impediment to solar pv installations.
- Identifying and record solar obstructions impacting potential solar pv performance.

Solar PV Concept Design.

- Creating concept design(s) for building and/or site solar PV array at each recommended site. Concept designs include overall array configuration, tilt, azimuth, and preliminary panel and inverter selections.
- Modeling annual solar pv performance based on detailed design components, historic local weather data, and site-specific solar obstructions.
- Creating a solar pv concept design report for each recommended site. Reports (found in Appendix 1 of this report) include:
 - Summary metrics including energy production, performance ratio, and kWh/kWp; Locations of array segments shown on map;
 - Monthly and annual production values;
 - System loss factors and detailed loss tree; records of condition set assumptions;
 - Preliminary bill of materials;
 - Preliminary electrical concept design assumptions;
 - Preliminary Mechanical layout assumptions;
 - Detailed concept plan/layout;
 - Detailed construction cost estimate;
 - 30 year energy production, value, and cost savings projections year-by-year.

Table 4.1 summarizes the results of the detailed site solar feasibility assessments for each of the sites, including rooftop and ground mounted array potential and first year energy generation. Appendix 1,"Solar Site Feasibility by Building" provides a brief summary of each as well as detailed preliminary array concepts, 30 year projected generation and value, and opinion of probable costs.

Concept Design

This report includes a conceptual layout of the solar PV array(s) for each site, as well as annual energy generation modeled from site-specific weather data, insolation levels, and solar obstructions. Energy generation is provided on a month-by-month basis. A preliminary breakdown of system components is included and forms the basis for the Order of Magnitude ProjectBudget.

The concepts in this report are intended to determine an overall magnitude of potential and to assess the viability of rooftop or ground-mounted solar. It should be noted that many options exist for the optimization of solar arrays depending on the overall goal for the site.

Rooftop solar arrays on flat roof facilities are typically designed to maximize annual energy production through a combination of maximizing the array size capable of fitting on available roof areas, as well as optimizing azimuth (compass direction of the array) and tilt configurations. As such, most rooftop arrays found in this report have a panel tilt of approximately 22 to 26 degrees. Alternative panel tilts of 30 to 36 degrees may yield slightly higher efficiency per panel (annual energy produced per panel), however the rooftop area required to produce the same total energy would increase as much as 25%. This means that for flat roof sites where the entire rooftop is required for energy generation, the site's annual electric production could drop by as much as 25% for a slight increase in per-panel yield efficiency. Rooftop arrays included in this report could implement either mechanically fastened or ballasted racking systems. Preliminary estimates assume ballasted racking components.

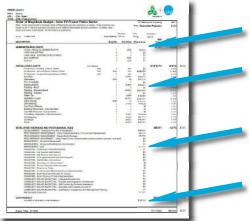
How To Read Concept Design Documents

Annual Production Report – this document provides a summary of the solar array size and annual performance.

System Metrics: an overview of the proposed array size, efficiency rating, and total annual electrical generation.

Monthly Production: an estimate of electric generation by month, responding to varying weather and sun conditions.

System Losses: all solar arrays have "losses" representing a reduction in total energy generated from the maximum potential of the panels. This provides an estimate of losses by category, such as shading or high panel temperature in strong sunlight conditions.


Array Concept – the second page of the "Annual Production Report" provides an illustration of the solar array concept and a summary of the array components planned.

Components: an overview of the solar array components used in modeling the potential production. Specific components such as the solar module or inverters used will have slight performance differences.

Detailed Layout provides an illustration of the solar PV array design concept used in this feasibility assessment. Alternative array locations and configurations are possible and may affect the potential array's ultimate cost and performance.

Project Budget - For each site, the Project Budget includes a preliminary opinion of project costs. This estimate is based on national solar PV installation cost data provided by the National Renewable Energy Laboratory (NREL) which have then been modified for local construction cost indices. Costs shown represent 2020 dollars. Projects planned for future installation should anticipate an increase in labor costs, however, system component costs are likely to remain constant or decrease on a per-kilowatt basis.

Administrative Costs: provide an allowance for general project costs such as legal/contract review and soil borings (for ground mounted arrays).

- Installation Costs: provides a detailed opinion of the actual solar array construction costs. This section is what a building owner might anticipate paying a solar contractor to construct the array.
- Professional Fees: provides an allowance for possible professional fees, such as design assistance or RFP/procurement assistance the site owner may choose to engage.
- Contingency: provides an allowance for a recommended project contingency to cover unexpected costs. This value should be seen as protecting a project budget and under the control of the site owner.

30-Year Energy Generation - All solar PV panels lose some degree of efficiency over time due to material degradation caused by unavoidable circumstances, including UV exposure and weather cycles. Panel degradation and system generation losses are typically covered under panel warranty, usually at 0.7% to 1% annual losses. Studies by NREL, however, show average panel degradation rates for contemporary panels to be less than 0.5% annually. The "life span" energy generation projections included here are predicted using a 0.8% annual degradation factor. "Degradation" refers to the decline in output that all solar panels experience over time. Due to system degradation over time, the percentage of facility annual energy need that is met by an array initially will not be the same level met by an array in later years. To assist site owners in anticipating this change over time, the schedule provided indicates the percentage of annual site energy use which can be met by the solar array(s) each year.

Based on the modeled annual energy generation, the value of the solar energy generated is calculated for each site. Estimates include the value of energy consumed on site as well as the value of annual energy sold to the grid. Taken together, these values represent the potential life-span economic value of the solar array, which can then be compared against the estimated project costs.

	DREAD T THE STREAM CONTROL TO A DECEMBENCY THE STREAM CONTROL TO	Financing:
Energy Generation Sched: an estimate of annual array	Crear Greenins Metals Montal Industrial The state Annual Industrial The state Ann	array loan o finance.
performance.		Annual Exp allowances maintenanc
Potential Revenue: an estimate of the value to the site of the solar energy	D Description Description <thdescription< th=""> <thdescr< td=""><td>Simplified estimate of pay back an</td></thdescr<></thdescription<>	Simplified estimate of pay back an
generated with assumed electric rate inflation.	Bits multiply different state COST WE REMANCE Elements ** Unreal Access of the Section and space state and space	term.

Financing: an allowance for array loan or bonding finance.

Annual Expenses: allowances for insurance and maintenance expenses.

Simplified Cash Flow: an estimate of array cash flow / pay back annually for 30 year term.

General Information	Solar Feasib	iltiy Concept								
Name	Nameplate Capacity - Rooftop	Nameplate Capacity - Ground	Nameplate Capacity -	Estimated Year 1 Generation	Estimated 30 Year Generation Total	Annual Generation Percent of Consumption	Net Zero Possible With On-Site Solar	Value	Concept Retains REC's (10	Cost (Estimated Total Lifetime)
City Hall	30.50		Carport	40,230		21.00%		\$169,327	year) No	
,				,				. ,	-	
Police Department	83.00	83.30		224,500	6,009,051	112.77%	Yes	\$861,483	Yes	\$480,686
Wastewater Treatment Plant	161.40			220,000	5,888,602	6.14%	No	\$701,490	Yes	\$461,071
Water Department Office	15.40			20,980	561,559	9.32%	No	\$91,035	No	\$59,108
Northfield Community Resource Center	397.30	80.90		568,530	15,217,486	104.26%	Yes	\$1,987,027	Yes	\$1,364,180
Outdoor Pool/Old Memorial field		81.30		112,500	3,011,217	106.53%	Yes	\$367,544	Yes	\$265,371
Ice Arena	227.20		235.20	605,600	16,209,716	104.05%	Yes	\$2,078,084	Yes	\$1,703,102
Maintenance Facility	53.60			74,390	1,991,151	113.48%	Yes	\$195,505	Yes	\$171,589
Liquor Store	17.50			23,860	638,646	19.91%	No	\$109,466	No	\$66,546
Northfield Area Fire & Rescue	59.20	69.60		169,780	4,544,395	110.77%	Yes	\$632,020	Yes	\$393,355
Grand Total	1,045	315	235	2,060,370	55,148,633	35.7%		\$7,192,981		\$5,074,228

Table 4.1: Summary of Solar Feasibility

paleBLUEdotuc

Section

Solar Implementation Master Plan

City of Northfield Buildings

Solar Implementation Master Plan

Implementation Plan Goal

The goal of this solar implementation plan is to recommend a path towards 100% carbon-free electricity by 2030 for all of the City facilities included in this report's assessments. This goal is in line with the City of Northfield's adopted Climate Action Plan. For a review of the general strategies the City can implement on each building site to achieve carbon free electricity, please see "Options For Meeting 100% Carbon Free Goal" in Section 1.

Prioritization Methodology

The prioritization for sites to receive on-site solar installations in this report are based on multiple factors including:

- Solar capacity and efficiency supported by the site's physical parameters
- Estimated Value to Cost ratio
- Estimated on-site solar cost per kWh compared to utility provided cost per kWh •
- Estimated on-site solar cost per kWh compared to Community Solar and Renewable Energy Credit cost per kWh

Community Solar Subscriptions

In 2017, the City of Northfield entered into a 25 year shared solar, or "community solar" agreement. The agreement is for an initial subscription of 1,912,500 kWh annually. Due to typical solar aging degradation rates, the actual "delivered" electricity will reduce slightly, resulting in a total of 1,695,725 kWh "delivered" by year 25. Community solar subscriptions support renewable energy development and typically benefit the subscriber with a reduction in their monthly electric bill.

As reviewed in Section 1, Community Solar subscriptions do not typically benefit the subscriber with the "Green Attributes" of the solar array. The "Green Attributes" of the community solar array are traditionally sold to the electric utility "offtaking" the electrical production. The result of this traditional community solar arrangement is that the community solar subscriber can claim to be supporting renewable energy, but cannot claim the greenhouse gas emission reductions or other "green attributes" of the solar array. The GHG emissions calculated for all of electricity the City receives through community solar subscriptions are required to be at the same emission rate as electricity supplied by the local electric grid. If the City wishes to offset the GHG emissions of city building electrical use, all electricity obtained through a solar subscription should be offset through the purchase of Renewable Energy Credits (REC). RECs may be purchased through the electric utility or separately through 3rd party providers.

For the purposes of establishing solar implementation recommendations for this report, paleBLUEdot assumes all electricity needs met through community solar subscriptions shall be offset by REC purchases prior to 2030 in support of the City's 100% renewable energy goal outlined above. See Table 5.1a for a review of the 2019 community solar subscription eligibility and allocation by City building.

In addition to the City's primary buildings, other premises receiving electrical service such as street lights and pump station locations, are also eligible for the Community Solar subscriptions and should be included in the City's carbon-free electricity Implementation Plan. See Table 5.1b for a review of additional premises eligible for Community Solar subscription.

Table 5.1a: 2019 Community Solar Subscription Eligibility and Allocation By City Building

General Information	Electric Use Data Current Community Solar Subscription							
			Location	Eligible for Existing Solar	Existing Solar	Existing Subscription	Subscription Percent of	
Name	Address	Electric kWh	(County)	Subscription	Subscription	Level (kWh)	Consumption	
City Hall	801 Washington St	191,574	Rice	Yes	Yes	185,367	96.8%	
Police Department	1615 Riverview Drive	199,070	Rice	Yes	Yes	178,476	89.7%	
Wastewater Treatment Plant	1450 Highway 3 North	3,584,843	Dakota	No			0.0%	
Water Department Office	1101 College St	225,011	Rice	Yes	Yes	214,700	95.4%	
Northfield Community Resource Center	1651 Jefferson Parkway	545,280	Rice	Yes			0.0%	
Outdoor Pool/Old Memorial field	801 7th St E	105,600	Rice	Yes	Yes	92,471	87.6%	
Ice Arena	1280 Bollenbacher Drive	582,055	Rice	Yes			0.0%	
Maintenance Facility	1710 Riverview Dr	65,553	Rice	Yes	Yes	65,706	100.2%	
Liquor Store	116 Fifth Street West	119,812	Rice	Yes	Yes	126,406	105.5%	
Northfield Area Fire & Rescue	301 5th St W	153,270	Rice	Yes			0.0%	
Grand Total		5,772,068				863,126	15.0%	

poleBLUEdot

Solar Implementation Master Plan

Table 5.1b: 2019 Community Solar Subscription Eligibility and Allocation - Other City Premises

				Eligible for		Existing	Subscription
			Location	-	Existing Solar	-	Percent of
Name	Address	Electric kWh	(County)		Subscription	Level (kWh)	Consumption
Other City Premises			(00000)				
Street lights	314 WOODLEY ST E		Rice	Yes			N/A
Crosswalk signal	2200 DIVISION ST S	0	Rice	Yes			N/A
Streetlight and crossing signal	120 3RD ST W	1239		Yes			0.0%
Well 6 - Electric	510 JEFFERSON PKWY	182,000		Yes			0.0%
Sechler Park	1700 ARMSTRONG RD	13,656		Yes			0.0%
Riverside Lions Park	710 S POPLAR ST	3847		Yes			0.0%
Well 5	1701 ARCHIBALD ST	29551.63		Yes	Yes	29551.63	100.0%
Roosevelt Park - warming house	980 ADAMS ST	1214		Yes	105	25551.05	0.0%
Streetlights	115 6TH ST W	1752		Yes			0.0%
EV Station and parking lot	413 WATER ST	6614		Yes			0.0%
Streetlight and/or traffic signal	600 HIGHWAY 3 S	1160		Yes			0.0%
SIGNAL LIGHT	1255 HIGHWAY 3 S	10587		Yes			0.0%
Streetlight and signal	2301 HIGHWAY 3 S	3386		Yes			0.0%
Babcock Rodeo Grounds	700 HIGHWAY 3 S	10579		Yes			0.0%
Well 3	1500 MAPLE ST	30065.68		Yes	Yes	30065.68	100.0%
	1120 HIGHWAY 3 S	4736			Tes	50005.08	
Steetlights	209 WATER ST S			Yes			0.0%
Street lights, Parking lot lights		16238		Yes		0	0.0% N/A
Bridge Square Memorial Park	21 BRIDGE SQ		Rice	Yes	Yes	0	
	800 5TH ST E		Rice	Yes	Yes		N/A
Streetlights	915 HIGHWAY 3 N	15250		Yes			0.0%
Sechler Park	1700 ARMSTRONG RD	4840		Yes			0.0%
Lift Station	951 BABCOCK LN	16110		Yes			0.0%
Riverside Lions Park	700 LINDEN ST S	6387		Yes			0.0%
Sechler Park	1200 ARMSTRONG RD	1488		Yes			0.0%
Babcock Park	1204 HIGHWAY 3 S	4320		Yes		20245-66	0.0%
PUMPING STATION	1101 COLLEGE ST	28215.66		Yes	Yes	28215.66	100.0%
Well 4	500 AMES ST	29799.6		Yes	Yes	29799.6	100.0%
LIBRARY	210 WASHINGTON ST	41585.15		Yes	Yes	41585.15	100.0%
Riverwalk lights	413 WATER ST	1151		Yes			0.0%
Signal light at Post	700 5TH ST W	3262		Yes			0.0%
Garage - Booker Bus, etc.	201 LINDEN ST S	1851		Yes			0.0%
Riverside Lions Park	800 POPLAR ST	5720		Yes			0.0%
SIGNAL LT/HWY 3 & WO	1103 HIGHWAY 3 S	11329		Yes			0.0%
Spring Creek Park - shelter, lights	500 JEFFERSON PKWY		Rice	Yes			0.0%
Riverwalk lights	250 WATER ST S		Rice	Yes			0.0%
Street lights	304 DIVISION ST S	2983		Yes			0.0%
Water Tower/Archery Range	10353 HALL AVE	13685		Yes			0.0%
Bridge Square	21 BRIDGE SQ		Rice	Yes	Yes	0	N/A
Central Park	421 4TH ST E		Rice	Yes			N/A
Odd Fellows Park	1001 FOREST AVE		Rice	Yes			0.0%
Streetlights	600 HIGHWAY 3 N	14393		Yes			0.0%
Sechler Park	1700 ARMSTRONG RD	7407.06		Yes	Yes	7407.06	100.0%
Streetlights	140 2ND ST W	3016		Yes			0.0%
WELL 2	1101 COLLEGE ST	28215.66		Yes	Yes	28215.66	100.0%
Compost site	2101 ARMSTRONG RD	1514		Yes			0.0%
Streetlights	140 2ND ST W	29654		Yes			0.0%
Way Park	725 SAINT OLAF AVE	7343		Yes			0.0%
Street Light	301 5TH ST W	25401		Yes			0.0%
Ped crossing flashing beacon	2 GREENVALE AVE W	410.96		Yes	Yes	410.96	100.0%
Ped crossing flashing beacon DQ	898 HIGHWAY 3 N	412.35		Yes	Yes	412.35	100.0%
Streetlights	4 FRANCIS CIR	4304	Rice	Yes			0.0%
Grand Total		637,721				195,664	30.7%

paleBLUEdotuc

Solar Implementation Master Plan

Solar Feasibility Overview

Based on the detailed solar feasibility assessments in Section 4 and Appendix 1 of this report of the primary City of Northfield facilities, the sites are capable of generating over 83 million kWh over a 30 year life span, with the first year generation at over 3.1 million kWh. The site concepts included in this report would achieve "net zero" electricity - meaning the site generates as much electricity in a year as it consumes - for 6 of the 10 sites reviewed. While additional energy generation is possible on many of these sites, the additional on-site generation strategies required to meet the existing electricity use on the site would be cost prohibitive. The 4 remaining sites would require a reduction of on-site energy demand, or further concept development in order to achieve net zero.

The full portfolio of solar PV projects outlined in Section 4 of this report represent \$7.1 million of investment including estimated financing and annual operation costs. These estimates do not anticipate leveraging the Federal ITC or tax depreciation values which would require a 3rd party ownership structure. The full portfolio outlined in Section 4 has a 30-year life span value of over \$10.5 million, providing an average 1.48 to 1 benefit to cost ratio. The projected benefit to cost ratio can be further improved on each project through exploration of alternative funding scenarios. The opinion of potential installed cost per watt for these projects varies from less than \$2 to more than \$3.50. The primary drivers for increased project costs are decreased efficiencies for small projects and/or costs associated with the construction of carport or structures for appropriate solar array exposures.

Implementation Priority Level

Based on the detailed solar feasibility assessment, some of the sites appear to be optimally suited for solar PV installations while others are moderate. Though there are multiple ways to judge the value of solar installation potential at any site (environmental impact, social impact, economic impact), this review uses only the economic impact for the identification of site implementation priority of concepts with the intent of meeting the City's stated goal of 100% renewable energy for all City facilities by 2030.

As outlined in Table 5.2, the priority level for each site is based on a combination of factors as overviewed in the Prioritization Methodology section. A combination of metrics shown on the table were used to establish the recommended priority levels as follows:

- Projected total economic value to cost of each solar array over a 30 year life span, communicated as a single number.
- Calculated 30 year life span cost per kWh comparison for carbon free electricity of on-site renewable option vs utility provided electricity combined with purchase of RECs.
- Consideration of on-site renewable option cost per kWh compared to current community solar subscription cost combined with purchase of RECs.

Reviewed against these metrics, the Priority Levels are:

Priority Level 1: Value to Cost Ratio of 1.39 or greater AND an Effective Cost per kWh Difference From Base Rate + REC of -\$0.01 or less (projected cost savings) AND an Effective Cost per kWh equal to or less than Solar Subscription + REC. (Lower projected costs than all other Carbon-Free options)

Priority Level 2: Value to Cost Ratio of 1.14 or greater AND an Effective Cost per kWh equal to or less than Base Rate + REC (Equal or lower projected costs than all other Carbon-Free options)

Priority Level 3: Effective Cost per kWh Difference From Base Rate + REC of \$0.02 or more (Higher projected costs than all other Carbon-Free options)

Please see the following pages for a summary of all sites and the recommended prioritization for solar implementation by organization as well as by Priority Level.

Solar Implementation Master Plan

Recommended Implementation Prioritization By Priority Level

Table 5.2 provides a detailed overview of the solar feasibility and projected annual energy generation potential for each site, organized by priority level. The "On-Site Solar Priority Level" for each site is identified. The priority levels range from 1 to 3. In general, sites with a "1" priority designation are likely solar pv sites with good or strong economic payback potential and should be implemented as soon as feasible by the City.

Sites with a "2" priority designation are likely sites with reasonable economic payback but may have less favorable electric utility rate structures and may benefit from further exploration of project parameters/approaches to increase cost efficiency of electric consumption prior to implementing on-site solar.

In general, sites with a "3" priority level may be more cost effectively addressed through the purchase of REC's meeting the site's energy consumption. These sites may also benefit from further exploration of project parameters/approaches to increase cost efficiency of electric consumption. Priority level 3 sites are not currently recommended for on-site solar array installation.

General Information	Solar Feasib	iltiy Concept												
	Capacity -	Nameplate Capacity -	Nameplate Capacity -	Estimated Year 1	Estimated 30 Year Generation	Generation Percent of	Net Zero Possible With On-Site		Concept Retains REC's (10	Cost (Estimated	Cost	Cost per kWh Difference From Base	Subscription	On-Site Solar Priority
Name	Rooftop	Ground	Carport	Generation	Total	Consumption	Solar	Value	year) *	Total Lifetime)		Rate + REC		Level
City Hall	30.50			40,230	1,076,811	21.00%	-	\$169,327	No	1,	1.55		\$0.047	
Police Department	83.00	83.30		224,500	6,009,051	112.77%	Yes	\$861,483	Yes	\$480,686	1.79	-0.011	\$0.015	2
Wastewater Treatment Plant	161.40			220,000	5,888,602	6.14%	No	\$701,490	Yes	\$461,071	1.52	0.004	\$0.031	. 2
Water Department Office	15.40			20,980	561,559	9.32%	No	\$91,035	No	\$59,108	1.54	0.020	\$0.047	3
Northfield Community Resource Center	397.30	80.90		568,530	15,217,486	104.26%	Yes	\$1,987,027	Yes	\$1,364,180	1.46	-0.017	\$0.009	1
Outdoor Pool/Old Memorial field		81.30		112,500	3,011,217	106.53%	Yes	\$367,544	Yes	\$265,371	1.39	-0.026	\$0.000	1
Ice Arena	227.20		235.20	605,600	16,209,716	104.05%	Yes	\$2,078,084	Yes	\$1,703,102	1.22	0.025	\$0.051	. 3
Maintenance Facility	53.60			74,390	1,991,151	113.48%	Yes	\$195,505	Yes	\$171,589	1.14	0.000	\$0.027	2
Liquor Store	17.50			23,860	638,646	19.91%	No	\$109,466	No	\$66,546	1.64	-0.007	\$0.020	2
Northfield Area Fire & Rescue	59.20	69.60		169,780	4,544,395	110.77%	Yes	\$632,020	Yes	\$393,355	1.61	-0.003	\$0.023	2
Grand Total	1,045	315	235	2,060,370	55,148,633	35.7%		\$7,192,981		\$5,074,228	1.42			

Table 5.2: Recommended Implementation Prioritization

* Sites with total solar array nameplate capacities below 40KW qualify for enrollment in Xcel Energy's Solar Rewards incentivized solar program. Through the program Xcel Energy compensates the solar array owner with additional payments as purchase of the array's RECs for the first 10 years of operation. Starting in year 11, the additional payments are terminated and the array's RECs revert back to the solar array owner.

** As noted, cost comparisons are based on "apples-to-apples" solutions achieving carbon-free electricity. As such comparisons assume the purchase of RECs for any site receiving grid electricity or Community Solar subscriptions. Prioritization of solar for sites should be re-evaluated if REC purchase is not included for sites without on-site solar generation. Green text indicates sites with on-site solar out-performing alternative approach to achieving carbon zero electricity

Solar Implementation Master Plan

Carbon-Free Electricity Implementation Plan - Primary Buildings

Table 5.3 provides an overview of the recommended approach to achieve Carbon-Free electricity for each site included in this study. The options to achieve Carbon-Free electricity for each site include (See "Options For Meeting 100% Carbon Free Goal" in Section 1):

- 1) Purchase of grid supplied electricity combined with purchase of Renewable Energy Credits (RECs).
- 2) Allocation of existing Community Solar Subscription and applying a portion of the resulting annual electric cost savings for purchase of RECs
- Installation of incentivized on-site renewable energy (without green attributes retained for first 10 years of operation) and applying a portion of the resulting annual electric cost savings for purchase of RECs
- 4) Installation of on-site renewable energy generation (with green attributes retained)

Some site recommendations may include a combination of the above.

Table 5.3: Recommended Carbon-Free Electricity Implementation Plan - Primary City Buildings

General Information	Carbon Free	Plan								
	On-Site Solar With REC	On-Site Without REC	Recommended Solar Subscription Level (Without	Utility Grid Provided	RECs Required	Estimated Annual REC Cost (25 year		Achieves Carbon	Replacement Year	Recommended On- Site Solar Array Installation
Name	Retained	Retained	REC Retained)	Electricity	(MWH)	ave)	Payment	Free	Scheduled	Timeframe
City Hall			191,574	0	192	\$2,525	Yes	Yes		Not Recommended
Police Department	224,500		0	0	0	\$0	N/A	Yes		3-6 Years
Wastewater Treatment Plant	220,000		0	3,364,843	3365	\$44,348	No	Yes	2021/2022	3-6 Years
Water Department Office			225,011	0	225	\$2,966	Yes	Yes		Not Recommended
Northfield Community Resource Center	568,530		0	0	0	\$0	NA	Yes		0-3 Years
Outdoor Pool/Old Memorial field	112,500		0	0	0	\$0	NA	Yes		0-3 Years
Ice Arena			582,055	0	582	\$7,671	Yes	Yes	2021	Not Recommended
Maintenance Facility	74,390		0	0	0	\$0	NA	Yes		3-6 Years
Liquor Store		23,860	95,952	23,860	120	\$1,579	Yes	Yes		3-6 Years
Northfield Area Fire & Rescue	169,780		0	0	0	\$0	NA	Yes		3-6 Years
Grand Total	1,369,700	23,860	1,094,592	3,388,703	4,483	\$59,089				

Carbon-Free Electricity Implementation Plan - Other Premises

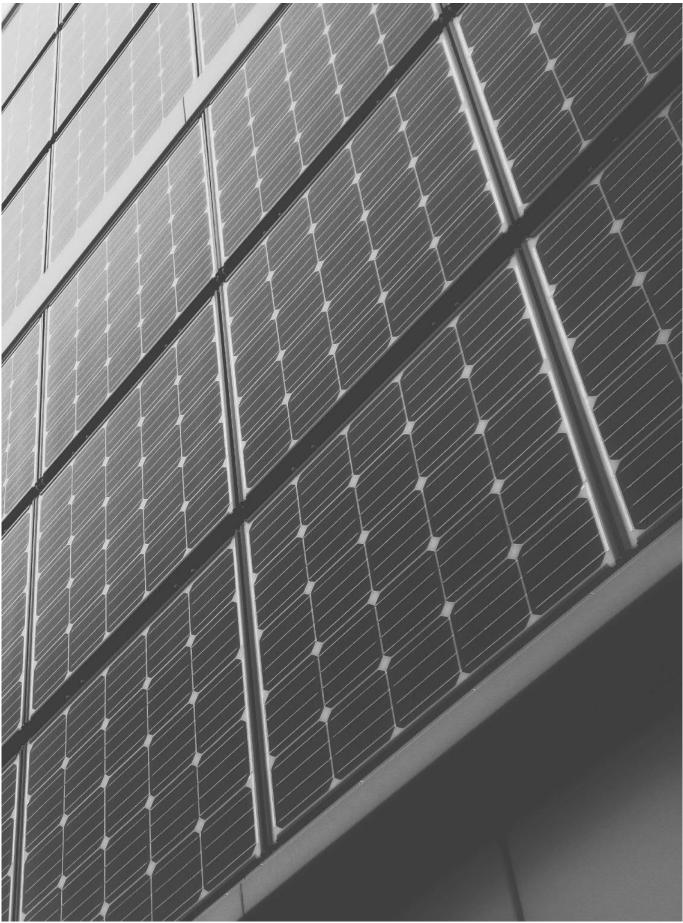
As noted earlier, In addition to the City's primary buildings, other premises receiving electrical service such as street lights and pump station locations, are also eligible for the Community Solar subscriptions and should be included in the City's carbon-free electricity Implementation Plan in order to achieve the City's goals. Table 5.4 provides an overview of the recommended approach to achieve Carbon-Free electricity for these other premises not included in the solar feasibility assessment effort of this study. The options to achieve Carbon-Free electricity for each site include (See "Options For Meeting 100% Carbon Free Goal" in Section 1):

- 1) Purchase of grid supplied electricity combined with purchase of Renewable Energy Credits (RECs).
- 2) Allocation of existing Community Solar Subscription and applying a portion of the resulting annual electric cost savings for purchase of RECs.

Some site recommendations may include a combination of the above.

%

Table 5.4: Recommended Carbon-Free Electricity Implementation Plan - Other Premises


General Information

Carbon Free Plan

General Information	Carbon Free Plan												
Name	On-Site Solar With REC Retained	On-Site Without REC Retained	Recommended Solar Subscription Level (Without REC Retained)	Utility Grid Provided Electricity	RECs Required (MWH)	Estimated Annual REC Cost (25 year ave)	REC Purchase Likely Offset by CSG Subscription or SolarRewards Payment	Achieves Carbon Free	Recommended On- Site Solar Array Installation Timeframe				
Other City Premises	-			-	-	4.0							
Street lights	-		0	0	0	\$0	Yes	Yes	0-3 Years				
Crosswalk signal			0	0	0	\$0	Yes	Yes	0-3 Years				
Streetlight and crossing signal			1,239	0	1	\$16	Yes	Yes	0-3 Years				
Well 6 - Electric Sechler Park			182,000	0	182 14	\$2,399 \$180	Yes Yes	Yes Yes	0-3 Years 0-3 Years				
			13,656	0	4	\$180		Yes					
Riverside Lions Park Well 5	-		3,847 29,552	0	30	\$389	Yes Yes	Yes	0-3 Years 0-3 Years				
Roosevelt Park - warming house			1,214	0	1	\$16	Yes	Yes	0-3 Years				
Streetlights			1,752	0	2	\$23	Yes	Yes	0-3 Years				
EV Station and parking lot			6,614	0	7	\$87	Yes	Yes	0-3 Years				
Streetlight and/or traffic signal			1,160	0	1	\$15	Yes	Yes	0-3 Years				
SIGNAL LIGHT			10,587	0	11	\$140	Yes	Yes	0-3 Years				
Streetlight and signal			3,386	0	3	\$45	Yes	Yes	0-3 Years				
Babcock Rodeo Grounds			10,579	0	11	\$139	Yes	Yes	0-3 Years				
Well 3			30,066	0	30	\$396	Yes	Yes	0-3 Years				
Steetlights			4,736	0	5	\$62	Yes	Yes	0-3 Years				
Street lights, Parking lot lights			16,238	0	16	\$214	Yes	Yes	0-3 Years				
Bridge Square			0	0	0	\$0	Yes	Yes	0-3 Years				
Memorial Park			0	0	0	\$0	Yes	Yes	0-3 Years				
Streetlights			15,250	0	15	\$201	Yes	Yes	0-3 Years				
Sechler Park			4,840	0	5	\$64	Yes	Yes	0-3 Years				
Lift Station			16,110	0	16	\$212	Yes	Yes	0-3 Years				
Riverside Lions Park			6,387	0	6	\$84	Yes	Yes	0-3 Years				
Sechler Park			1,488	0	1	\$20	Yes	Yes	0-3 Years				
Babcock Park			4,320	0	4	\$57	Yes	Yes	0-3 Years				
PUMPING STATION			28,216	0	28	\$372	Yes	Yes	0-3 Years				
Well 4			29,800	0	30	\$393	Yes	Yes	0-3 Years				
LIBRARY			41,585	0	42	\$548	Yes	Yes	0-3 Years				
Riverwalk lights			1,151	0	1	\$15	Yes	Yes	0-3 Years				
Signal light at Post			3,262	0	3	\$43	Yes	Yes	0-3 Years				
Garage - Booker Bus, etc.			1,851	0	2	\$24	Yes	Yes	0-3 Years				
Riverside Lions Park			5,720	0	6	\$75	Yes	Yes	0-3 Years				
SIGNAL LT/HWY 3 & WO	_		11,329	0	11	\$149	Yes	Yes	0-3 Years				
Spring Creek Park - shelter, lights			10,137	0	10	\$134	Yes	Yes	0-3 Years				
Riverwalk lights			9	0	0	\$0 \$20	Yes	Yes	0-3 Years				
Street lights			2,983	0	3 14	\$39	Yes	Yes	0-3 Years				
Water Tower/Archery Range			13,685	-		\$180	Yes	Yes	0-3 Years				
Bridge Square Central Park			0	0	0	\$0 \$0	Yes Yes	Yes Yes	0-3 Years 0-3 Years				
Odd Fellows Park	+		902	0	1	\$0 \$12	Yes	Yes	0-3 Years				
Streetlights			14,393	0	14	\$12	Yes	Yes	0-3 Years				
Sechler Park	-		7,407	0	14 7	\$190	Yes	Yes	0-3 Years				
Streetlights			3,016	0	3	\$98	Yes	Yes	0-3 Years				
WELL 2			28,216	0	28	\$372	Yes	Yes	0-3 Years				
Compost site			1,514	0	28	\$20	Yes	Yes	0-3 Years				
Streetlights			29,654	0	30	\$391	Yes	Yes	0-3 Years				
Way Park			7,343	0		\$97	Yes	Yes	0-3 Years				
Street Light	1		25,401	0	25	\$335	Yes	Yes	0-3 Years				
Ped crossing flashing beacon	1		411	0	0	\$5 \$5	Yes	Yes	0-3 Years				
Ped crossing flashing beacon DQ			412	0	0	\$5	Yes	Yes	0-3 Years				
Streetlights			4,304	0	4	\$57	Yes	Yes	0-3 Years				
Grand Total	0	0	637,721	0	638								

76,687 Remaining CSG Subscription Capacity (average of 25 years)

Solar for the City of Northfield

Section

Environmental Benefits

City of Northfield Buildings Solar Implementation

Environmental Benefits

Increasing use of Solar PV for electricity generation (on-site solar arrays and/or purchase of RECs) for City of Northfield government facilities will offer additional indirect benefits, namely the reduction of Greenhouse Gas emissions (GHG) and the reduction of fresh water use.

Greenhouse Gas and Electricity

Greenhouse gas emissions form, primarily, from the burning of fossil fuels. The carbon footprint of electricity is the total greenhouse gas emissions throughout the lifecycle from source fuel extraction through to end user electricity. According to the Intergovernmental Panel on Climate Change (IPCC), the median greenhouse gas emission, measured in metric tonnes, for 1 Gwh of electricity by fuel type is as follows:

Electricity Source	Metric Tonnes
	GHG/MWh
Hydroelectric	.004
Wind	.012
Nuclear	.016
Biomass	.018
Geothermal	.045
Solar PV	.046
Natural gas	.469
Coal	1.001

The Water/Energy Nexus

Water and energy are inextricably linked in our current modern infrastructure. Water is used in all phases of energy production. Energy is required to extract, pump and deliver water for use, and to treat waste-water so it can be safely returned to the environment. The cumulative impact of electricity generation on our water sources can be significant, and varies by fuel source. According to The River Network, the average fresh water use for 1 Gwh of electricity by fuel type is as follows:

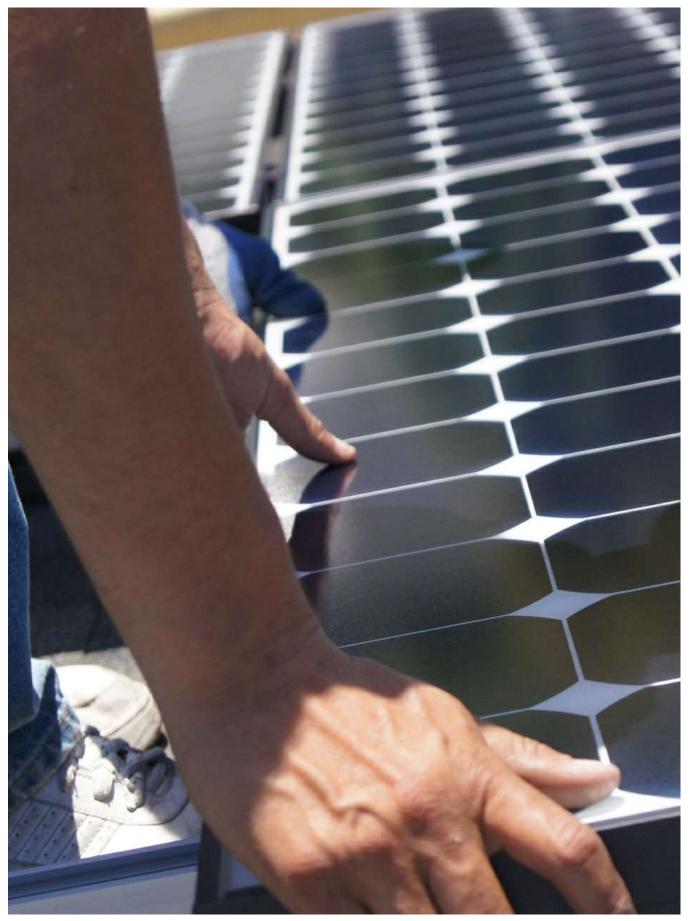
Electricity Source	Gallons/MWh
Hydroelectric	29,920
Wind	1
Nuclear	2,995
Biomass	2
Geothermal	2
Solar PV	2
Natural gas	1,512
Coal	7,143

Solar for the City of Northfield

Environmental Benefits

Current Regional Electric Grid Profile

According to reports on the Electricity Supply by Energy Source for the Upper Midwest grid region, the average greenhouse gas emissions per 1 Mwh of electricity is .365 Metric Tonnes. Using the River Network average fresh water use by fuel type, the average water use per 1 Mwh or electricity in the LLBO region is 5,306.5 gallons.


Based on these numbers, for every Mwh of electricity delivered through solar pv for Northfield government facilities, the City can reduce its annual Greenhouse Gas emissions accounting by .365 metric tonnes (full life-cycle Greenhouse Gas emissions reduction is .319 metric tonnes) and its water footprint by 5,306.5 gallons.

Summary Environmental Potential

Over a 30 year life span for the full project implementation detailed in Section 5 equates to a reduction of 2,130.3 metric tonnes of greenhouse gas (over 41.8 million cubic feet of man made atmosphere) and 31 million gallons of water conserved. See the Table 6.1 for the Environmental Benefit by project priority level and type (on-site solar vs REC purchase).

Table 6.1: Carbon And Water Footprint Reduction Potential - 30 Year Life Span										
Priority Level	Annual Generation	GHG Emission Reduction	Water Footprint Reduction							
Group										
1+2 on-site Solar	2,410.5 MWh	879.8 mTons	12.8 Million Gallons							
1+2+3 REC Purchase	3,426 MWh	1,250.5 mTons	18.2 Million Gallons							
Total	5,836.5 MWh	2,130.3 mTons	31 Million Gallons							

Solar for the City of Northfield

Section

Conclusions and Next Steps

Conclusions and Next Steps

Project Ownership and Financing Scenarios

The City has multiple ownership and project financing options available. paleBLUEdot recommends the exploration of the following options:

City Direct Purchase/Owned Solar PV

Under this option, the solar arrays developed are purchased in full from the project contractor at the completion of the array construction and commissioning. The direct purchase can be a cash purchase, or a financed purchase. Should the City desire a direct purchase option on each site, there are several options for structuring the financing, including:

Issue Tax Exempt Bonds.

For most government entities, securing up-front capital through bonds is how public renewable energy projects have traditionally been financed. Prior to issuing a tax exempt bond, research will be required to verify that solar pv projects are qualified for issuance of this bond type.

Apply to the IRS for a Clean Renewable Energy Bonds allocation

CREBs may be issued by electric cooperatives, government entities (states, cities, counties, territories, Indian tribal governments or any political subdivision thereof), and by certain lenders. The bondholder receives federal tax credits in lieu of a portion of the traditional bond interest, resulting in a lower effective interest rate for the borrower. The issuer remains responsible for repaying the principal on the bond. For approved applicants, the federal incentive CREBs can be a valuable source of low-cost financing, if steps are taken to reduce the high transaction costs associated with their issuance.

Bond-PPA Hybred

The hybrid model is a financing option by which a government entity issues a government bond at a low interest rate and transfers that low-cost capital to a developer in exchange for a lower PPA price. Under the model, a government entity (the administrator) issues a request for proposals (RFP) seeking a solar developer to build, operate, and own a solar project or portfolio of projects on public buildings (local hosts). The administrator sells bonds to finance the development costs of the PV installation. The administrator then enters into both a lease-purchase agreement with the winning bidder and a PPA (on behalf of the local hosts) to buy the electricity from the PV system. Careful consideration and definition of the status of renewable energy credits should be made (see Section 1).

Third-Party Engagement Options.

The Federal Tax Incentive program for solar PV, as well as the accelerated depreciation available for solar equipment (MACRS) are very significant opportunities to reduce the up-front costs of solar pv installations through 2021. Third-party engagement options allow mechanisms for Tribal government entities to capture the value of these federal tax incentives. The third party engagement options paleBLUEdot recommends for the City include:

Solar Lease or Power Purchase Agreements

Under this approach, the project development team retains ownership of the solar array and charges a monthly fee to the site owner. The monthly fee is either a set dollar value for the use of the solar equipment ("solar lease"), or a varying monthly fee based on the total electricity produced by the solar array ("Power Purchase Agreements"). In both approaches, the site owner incurs no "up front" costs and typically experiences a reduction in their monthly electricity expenses of perhaps 10%. Both of these options typically include a purchase clause which enables the site owner to purchase the system at fair market value at a future date (year 7, 10, 15, etc).

City Direct Purchase with Reverse ITC Lease

This approach enables a site owner to own the solar array, usually with no up front costs, while empowering the solar project development team to receive the ITC and MACRS tax benefits. This approach is particularly effective for Tribal, Government, or non-profit entities who wish to claim ownership of the array while leveraging the value of the tax benefits through reduced project costs. Under this scenario, the site owner purchases the array at the completion of the project installation and commissioning, usually under a financed purchase whose terms are identical to a typical PPA or Solar Lease, and then executes a reverse lease granting the tax benefit ownership rights to the project development team.

Conclusions and Next Steps

Conclusions

The City of Northfield could leverage both economic and environmental benefits through the further implementation of solar pv at many of the primary City of Northfield facilities. The recommendations of this report are as follows:

- 1) City to explore proceeding with the procurement of solar pv for all "Priority Level 1 and Level 2" sites as outlined in this report. It is our recommendation that the City explore procurement of Priority Level 1 solar installations prior to the end of the 2023 calendar year and Priority Level 2 installations prior to the end of the 2026 calendar year.
- 2) City to eExplore executing a joint bulk procurement Request for Proposal process within the 3rd or 4th quarter of 2020 for all "Priority Level 1" solar pv sites (note, City may leverage greater savings if Priority level 2 sites are included as an option). This RFP Process should request comparative proposal options for direct purchase as well as 3rd party project delivery options. The RFP should be configured to promote project cost savings based on the total potential installed capacity, leveraging the "power of bulk purchasing".
- 3) Explore the inclusion of local business utilization as well as Northfield resident internship, training, and employment as major selection criteria for the initial and all future tribal solar array procurement processes as a strategy to realize the community economic benefit potential outlined in Section 2 of this report.
- 4) Additional recommendations in support of community-wide solar potential as outlined in Section 2.

Next Steps

We recommend the following next steps for the City of Northfield in implementation of the development of its Solar PV portfolio:

- 1) The preliminary prioritizations indicated in this report are based on solar pv performance metrics and EUI data. Further consideration for final prioritization should be made based on the City's anticipated maintenance, roof replacement, and construction schedules.
- 2) Projects which anticipate rooftop arrays should have a preliminary structural assessment to confirm solar pv loading can be adequately handled by the existing structure. The weight of a PV system varies based on the panel and racking systems selected, however, preliminary structural assessments should confirm the structure's ability to support 2-4lbs per square foot for typical flush or tilted racking systems, or 5-9lbs if ballasted racking systems are desired.
- 3) Develop a detailed implementation plan timeframe. Implementation schedule should identify dates for procurement package development, procurement bidding, installation, and project startup for all project sites.
- 4) Engage a consultant qualified to support the City in the development of a City bulk purchase competitive bid Request for Proposal (RFP) package for all Priority Level 1 and 2 projects. The RFP should be developed to provide structure to and encourage local participation and City resident training and job placement. The RFP should also be structured to encourage cost discounting based on total aggregate solar array installation. Finally, the RFP should be used to solicit competitive bidding from the national pool of solar developer/contractors to leverage the greatest cost savings for City, recommendations for the RFP include:
 - A To explore the most beneficial project delivery method, the City should consider asking for cost proposals for 1st party ownership (array purchased directly by City) as well as 3rd party ownership (solar power purchase agreement "PPA" or solar lease).
 - B City should consider including all Priority 1 and Priority 2 sites from this report (see Section 5) to explore the potential for leveraging greater cost competitiveness of bulk purchase.
 - C. RFP should be structured to encourage respondents to provide a sliding scale fee based on the total KW installed capacity of projects ultimately engaged.

paleBLUEdotuc

Solar for the City of Northfield

Section

Solar Site Feasibility Reports by Building City of Northfield Buildings

The goal of the solar feasibility concept development is to explore the general potential for solar pv on each site with the goal of achieving a Zero Net Energy site (a site which generates as much electricity within a year as it consumes within the same timeframe).

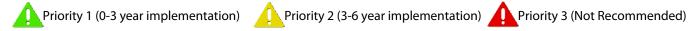
Prioritization was given to rooftop solar arrays, with ground mounted and "carport" arrays being included only for sites which required them to achieve Zero Net Energy, or for building sites which can reasonably be assumed to have a structure incapable of supporting a rooftop array. Prior to proceeding further with the planning of any rooftop solar pv array, an assessment of the structure of each building included in this section should be conducted. All sites which have a ground mounted array in this section should have a civil engineering review of the site areas anticipating solar arrays to verify appropriate soil and site conditions.

A preliminary opinion of cost as well as a preliminary 30 year energy generation and value projection have been developed for each site. Costs are intended to illustrate Order of Magnitude and are preliminary in nature. Cost unit prices are based on 2017 national averages provided by the National Renewable Energy Laboratory, modified using local construction cost indicies. The 30 year value projections include estimates of base and solar buy back electric rates based on information available from the subject utility. Electric rates should be validated prior to proceeding further with the planning of any site.

Solar Feasibility Assessment

The detailed Solar Feasibility Assessment for each of the sites can be found in Appendix 1 of this report. The Solar Feasibility Assessment included a review of overall solar feasibility as well as development of solar pv concept designs for each recommended site. These efforts consisted of:

Determining the feasibility of solar energy :


- Conducting remote review of each recommended site using satellite data of each subject building and site.
- Identifying current and planned future building and site conditions which create impediment to solar py • installations.
- Identifying and record solar obstructions impacting potential solar pv performance •

Solar PV Concept Design.

- Creating concept design(s) for building and/or site solar PV array at each recommended site. Concept • designs include overall array configuration, tilt, azimuth, and preliminary panel and inverter selections.
- Modeling annual solar py performance based on detailed design components, historic local weather data, and site-specific solar obstructions.
- Creating a solar pv concept design report for each recommended site. Reports (found in Appendix 1 of this report) include:
 - Summary metrics including energy production, performance ratio, and kWh/kWp; Locations of array segments shown on map;
 - Monthly and annual production values;
 - System loss factors and detailed loss tree; records of condition set assumptions;
 - Preliminary bill of materials;
 - Preliminary electrical concept design assumptions;
 - Preliminary Mechanical layout assumptions;
 - Detailed concept plan/layout;
 - Detailed construction cost estimate;
 - 30 year energy production, value, and cost savings projections year-by-year.

Recommended Site Priority

Site prioritization is outlined in greater detail in Section 5 of this report. As reviewed in that section, the prioritization for sites to receive on-site solar installations in this report are based on multiple factors. Site prioritization for on-site solar, as defined in Table 5.3 of Section 5 are:

To the right are the sites with detailed solar feasibility assessments included in this Appendix (for electronic document viewing, click the name of each site view the report)

Name

City Hall

Police Department

Wastewater Treatment Plant

Water Department Office

Northfield Community Resource Center

Outdoor Pool/Old Memorial field

Ice Arena

Maintenance Facility

Liquor Store

Northfield Area Fire & Rescue

City Hall

Concept Design

The roof configuration of the City Hall building is moderately suited for solar PV installation, with good orientation, and configuration, however the building has moderately significant obstructions due to rooftop equipment.

The concept explored in this option is a rooftop solar array meeting the program requirements for the Xcel Energy Solar Rewards program. The Solar Rewards program incentivizes solar installations, first by attributing all energy generated by the solar array to the building's energy consumption on a one-to-one basis (as would occur in a traditional Net Metering interconnection). Secondly, the Solar Rewards program pays the site owner an additional \$0.06 per kWh generated for the first 10 years of operation. Under this arrangement, the site owner receives essentially double compensation for electricity generated by the array for the first 10 years. In exchange, Xcel Energy is allowed to retain the Renewable Energy Credits (the "green attributes") for all power generated by the solar array for the 10 year period. Following the 10 year period the array reverts back to a net metered site (with energy generation offsetting energy consumed on a one-to-one basis)

The array is not capable of offsetting all of the electricity used on site. The array's first year generation is estimated to offset approximately 21% of the site's current reported electricity consumption. The site utilization and tree coverage does not readily support ground mounted arrays while carport arrays would not be cost effective for this site and its energy tariff structure. Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance

The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.55:1 ratio. As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.02 more than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

COSTS AND FINANCING

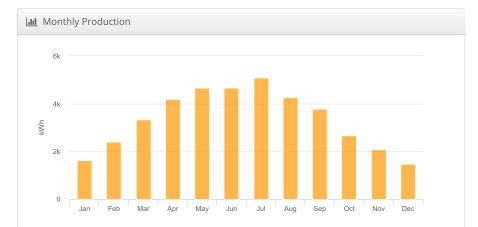
Total Installed Array Cost (incl. contingency, other	4.2.2.2.2.2
owner expenses)	\$82,621
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$11,410
Operational Expense Allowance (insurance, O+M, 30- year)	\$15,190
Total Lifetime Project Costs	\$109,221
SAVINGS	
SAVINGS Total Lifetime Project Savings	\$169,327
	\$169,327
Total Lifetime Project Savings OUTCOMES	\$169,327 \$60,106
Total Lifetime Project Savings OUTCOMES Net Lifetime Project Costs or Savings	
Total Lifetime Project Savings	\$60,106

Note, values do not include social cost of carbon avoided by the solar array.

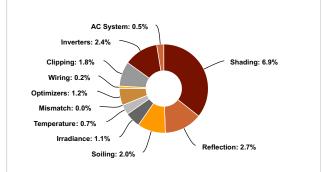
Percent of Electricity Usage Covered by Solar (Year

21.00%





Rooftop 1 City of Northfield City Hall, 801 Washington St, Northfield, MN

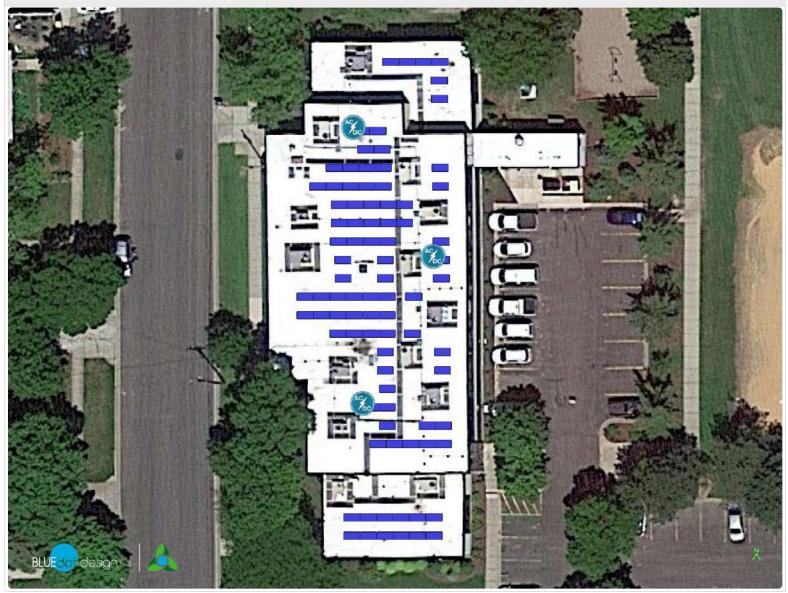

🖋 Report	
Project Name	City of Northfield City Hall
Project Address	801 Washington St, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

LIII System Metr	ics
Design	Rooftop 1
Module DC Nameplate	30.5 kW
Inverter AC Nameplate	24.0 kW Load Ratio: 1.27
Annual Production	40.23 MWh
Performance Ratio	81.9%
kWh/kWp	1,321.0
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)
Simulator Version	70e353687f-301d24fdcb-8f3cf974d4- 5e9aee986c

• Sources of System Loss

🖣 Annual Pr	oduction		
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,613.7	15.7%
Irradiance	Shaded Irradiance	1,501.7	-6.9%
(kWh/m²)	Irradiance after Reflection	1,461.3	-2.7%
	Irradiance after Soiling	1,432.1	-2.0%
	Total Collector Irradiance	1,431.4	0.0%
	Nameplate	43,538.9	
	Output at Irradiance Levels	43,066.3	-1.1%
	Output at Cell Temperature Derate	42,762.2	-0.7%
-	Output After Mismatch	42,762.1	0.0%
Energy (kWh)	Optimizer Output	42,246.3	-1.2%
()	Optimal DC Output	42,177.5	-0.2%
	Constrained DC Output	41,437.0	-1.8%
	Inverter Output	40,427.4	-2.4%
	Energy to Grid	40,225.2	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		10.1 °C
	Avg. Operating Cell Temp		16.7 °C
Simulation Metr	ics		
	0	perating Hours	4673
		Solved Hours	4673

Condition Set																
Description	Cond	dition	Set 1													
Weather Dataset	TMY	TMY, 10km grid (44.45,-93.15), NREL (prospector)														
Solar Angle Location	Mete	Meteo Lat/Lng														
Transposition Model	Pere	Perez Model														
Temperature Model	Sandia Model															
	Rack	к Туре			а			b			Te	mper	ature D	Delta		
Temperature Model Parameters	Fixed Tilt			-3.	-3.56		-0.07	75		3°	С					
	Flus	h Mou	unt		-2.	.81		-0.04	155		0°	С		, PAN Sheet		
Soiling (%)	J	F	М		A	Μ		J	J		A	S	0	N	D	
	2	2	2		2	2		2	2		2	2	2	2	2	
Irradiation Variance	5%															
Cell Temperature Spread	4° C															
Module Binning Range	-2.5%	6 to 2.	5%													
AC System Derate	0.50	%														
Module Characterizations	Mod	lule				Uploaded By			d	Characterization						
		l-350 (iene li	Mar18) nc))				lsom Ibs		Heliene_72M- 350_Mar2018.pan, PAN						
Component	Devi	ice					Uploaded By			Ву	y Characterization					
Component Characterizations	P40	0 NA (SolarEc	lg	e)			Folsor	n La	bs		Mfg Spec Sheet				
	SE8	K (Sola	arEdge)				Folsom Labs Spec Sheet				et					


BLUcoo design in 🛛 🎄

Annual Production Report produced by Del McNally

🖨 Components					
Component	Name	Count			
Inverters	SE8K (SolarEdge)	3 (24.0 kW)			
Strings	10 AWG (Copper)	3 (42.0 ft)			
Optimizers	P400 NA (SolarEdge)	87 (34.8 kW)			
Module	Heliene Inc, 72M-350 (Mar18) (350W)	87 (30.5 kW)			

🚠 Wiring Zor	nes								
Description	cription Combiner Poles		Str	ing Size	Stringing	Strategy			
Wiring Zone		12		16-	-35	Along Rac	Along Racking		
Field Segn	nents Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	69	69	24.2 kW
Field Segment 2	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	12	12	4.20 kW
Field Segment 3									

Oetailed Layout

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

City Hall 801 Washington St Rooftop Date 5/9/2020

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	1,076,811	kWh
				Total Electricity Bill Savings	\$169,327	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
30.50	Array Size (kW DC)	191,574	Total Annual Electric Use (kWh)	Allowance for annual expenses and financin	g costs excluded	
350	Watt Rating	516.00	Total Annual Demand (kW)	Capital Cost	\$82,621	
87	Number of Solar Modules (Roof)	25,004	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
0	Number of Solar Modules (Ground)	65.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$82,621	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	14.64	Years
24.00	Capacity (kW AC)	7.66	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	77%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$13,859.63	Annual Energy Charge (\$)	Financed Capital Cost	\$94,031	
40,230	First Year Generation (kWh)	\$5,412.00	Annual Demand Charge (\$)	Financed Capital Payback	16.66	Years
\$78,901.15	Total Contractor Bid	\$19,271.63	Total Annual Electric Cost	Financed Array Lifetime Payback	:	
\$0.00	Other Owner Expenses (legal, etc.)	\$0.0723	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and t	financing costs included.	
\$3,719.86	Owner Contingency (if any)	\$10.49	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$15,190	
\$82,621.02	Total Project Budget	43.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$109,221	
\$2.71	Total Cost Per Watt	Financial	•	Financed Array Lifetime Payback	19.35	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$16,524.20	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1572	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.1014	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0558	
\$4.20	Annual O+M Costs (per kW DC)	\$66,096.81	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.55	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$5,085	Inverter Replacement Cost (Assumes year 20)	10	Loan/Bond Term (assumed)			
		reported rate per kWh.	d based on user entry for Annual setric Use and may differ from utility o be based on EIA Data Browser 10			

OTu C56ju 'f ez					5D2Yu 275	paleBLUEdot
bxy zYu' xyNx'y2fucic ywcvwfyw				POau y	uyOu uw	853
ayEO uy yxyx uybxyzYu' xyuxuyyu u y3O 756B u uuyu'y xyxv yau ueyyuvyQy'Xuvu 1 xzyx w xwyuxywuuyx 7575x u3M z u y u		u y vu yx w		lyu 6Sy y u	·	95 3 7
Mwy E 5		Yuy O Uxwy 6365	u	Xuv O 6365 636	v yx 5 fhN	c QeOQa g
P QF Oeldgliba		du I	n M	с уw О	gbgMX	gbgMX
MPY Laiuf geMgUba Obfgf					85	5355(
XQ\$ MX1R#ONX) MPY Lal blige Mglü Q		5	7: 55	85		•
XMa P Md Oh blogbba		5	5	85		
XMaPfMXQ2QkUlgbaSfgehOgheQf		5	5	85		
fb UX Nbelai Sf		5	9755	85		
fhei Q		5	8: 55	85		
låfgMXXMgUbaObfgf jueu					&B918DB	D535: (
ci Y x y 2e z -Ty y y8:5j.	8: 5	CB	7: B	&7718B:		8535B(
ciYxy2SxY-Tyyy8:5j.	8: 5	5	7: B	85		5355(
ciYxy2Ou 4cu '-Tyyy8:5j.	8: 5	5	7: B	85		5355(
Uyy		6	9976	891976		: 3D9(
b y		CB	A5	& 1775		B357(
f w uNbf		6	5	85		5355(
Qyw wuNbf		6	: DBB	& DBB		C358(
euw '2e z		6	A5CD	&A15CD		C36C(
euw '2S xY		6	5	85		5355(
euw '2Ou		6	5	85		5355(
fuy gu		6	5	85		5355(
Uuu Xuv		6	A9D9	&A19D9		C3B8(
fyRyw'		5	6:	85		5355(
fySux '		5	76BC5	85		5355(
e zcuw4eyu		6	6BD6	&61BD6		7396(
N x 'ey u 2a Uw xyx		5	5	85		5355(
TuYuey u2a Uwxyx		5	5	85		5355(
cy '1U yw 1U yw yw		6	88: :	&818: :		93 6(
NxO 'yw		6	9: 6C			A35B(
b y yux		6	B5BD	&B15BD		D8 6(
C Z		6	B5BD	&B15BD		D3 6(
PQiQKbcQebiQeTQMPMaPcebRQffUbaMXRQQf					891 59	: 39: (
cebOheQYQagYMaMSQYQag2b y eyyyu y4c w y y uuʻy	у			85		
cebOheQYQagYMaMSQYQag2Py '4N x cuwu'y				&61CA5		
cebOheQYQagYMaSQYQag2h c ywgy Pyy u - yw yw	1 vyy 1	uxuzz.		8998		
QaSlalQQelalS2f w uM y y				&61BD6		
QaSlalQQelalS2f w uYxzwu - wxyx.				85		
Qa Stal QQetal S 20				85		
ey v uvyQ y y				895D		
					881 875	93 5(
ObaglaiSQaOl bjaQe≸cebVQOgObaglaiSQaOl				&81B75	600/5)C CE
n a devi cen verd on a dia s da ol				00000		

OWNEF 0

PROJ: City Hall LOC:: 801 Washington St TITLE: Rooftop 30-Year Energy Output Calcs

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

-20	paleBLUEdatu	
ity		30.5

40.2 191.6 65%

09-May-20 DC Nameplate Capacity Year 1 Generation Projection (MWH)

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

							Energy		Estimated							
						Utility	Savings	Utility	Potential			Cash				
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Operation	Calendar	Annual Energy	v	1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
1	2021	40,230	k\Wh	100%	21.00%	\$0.0723	\$2,910	\$5,412	\$768	\$2,414	\$6,092	(\$24,275)	(\$122)	(\$128)	(\$18,433)	(\$18,433)
2	2022	39,908	kWh	99%	20.83%	\$0.0742	\$2,959	\$5,547	\$787	\$2,394	\$6,141	(\$7,751)	(\$124)	(\$131)	(\$1,865)	(\$20,298)
3	2023	39,589	kWh	98%	20.67%	\$0.0760	\$3,009	\$5,686	\$807	\$2,375	\$6,191	(\$7,751)	(\$127)	(\$133)	(\$1,820)	(\$22,118)
4	2024	39,272	kWh	98%	20.50%	\$0.0779	\$3,060	\$5,828	\$827	\$2,356	\$6,243	(\$7,751)	(\$129)	(\$136)	(\$1,773)	(\$23,891)
5	2025	38,958	kWh	97%	20.34%	\$0.0799	\$3,111	\$5,974	\$847	\$2,337	\$6,296	(\$7,751)	(\$132)	(\$139)	(\$1,725)	(\$25,617)
6	2026	38,646	kWh	96%	20.17%	S0.0819	\$3,163	\$6,123	\$869	\$2,319	\$6,351	(\$7,751)	(\$135)	(\$141)	(\$1,676)	(\$27,293)
7	2027	38,337	kWh	95%	20.01%	\$0.0839	\$3,216	\$6,276	\$890	\$2,300	\$6,407	(\$7,751)	(\$137)	(\$144)	(\$1,625)	(\$28,918)
8	2028	38,030	kWh	95%	19.85%	\$0.0860	\$3,270	\$6,433	\$913	\$2,282	\$6,465	(\$7,751)	(\$140)	(\$147)	(\$1,573)	(\$30,491)
9	2029	37,726	kWh	94%	19.69%	\$0.0881	\$3,325	\$6,594	\$935	\$2,264	\$6,524	(\$7,751)	(\$143)	(\$150)	(\$1,519)	(\$32,010)
10	2030	37,424	kWh	93%	19.54%	\$0.0904	\$3,381	\$6,759	\$959	\$2.245	\$6,586	(\$7,751)	(\$146)	(\$153)	(\$1,464)	(\$33,474)
11	2031	37,125	kWh	92%	19.38%	\$0.0926	\$3,438	\$6,928	\$983		\$4,421	\$0	(\$149)	(\$156)	\$4,116	(\$29,358)
12	2032	36,828	kWh	92%	19.22%	\$0.0949	\$3,496	\$7,101	\$1,007		\$4,503	\$0	(\$152)	(\$159)	\$4,192	(\$25,166)
13	2033	36,533	kWh	91%	19.07%	\$0.0973	\$3,555	\$7,279	\$1,033		\$4,587	\$0	(\$155)	(\$162)	\$4,270	(\$20,896)
14	2034	36,241	kWh	90%	18.92%	\$0.0997	\$3,614	\$7,461	\$1,058		\$4,673	\$0	(\$158)	(\$166)	\$4,349	(\$16,547)
15	2035	35,951	kWh	89%	18.77%	\$0.1022	\$3,675	\$7,647	\$1,085		\$4,760	\$0	(\$161)	(\$169)	\$4,430	(\$12,117)
16	2036	35,664	kWh	89%	18.62%	\$0.1048	\$3,737	\$7,838	\$1,112		\$4,849	\$0	(\$164)	(\$172)	\$4,512	(\$7,605)
17	2037	35,378	kWh	88%	18.47%	\$0.1074	\$3,800	\$8,034	\$1,140		\$4,939	\$0	(\$167)	(\$176)	\$4,596	(\$3,009)
18	2038	35,095	kWh	87%	18.32%	\$0.1101	\$3,863	\$8,235	\$1,168		\$5,032	\$0	(\$171)	(\$179)	\$4,681	\$1,672
19	2039	34,814	kWh	87%	18.17%	\$0.1128	\$3,928	\$8,441	\$1,197		\$5,126	\$0	(\$174)	(\$183)	\$4,769	\$6,441
20	2040	34,536	kWh	86%	18.03%	\$0.1157	\$3,994	\$8,652	\$1,227		\$5,222	\$0	(\$178)	(\$5,271)	(\$227)	\$6,214
21	2041	34,260	kWh	85%	17.88%	\$0.1185	\$4,061	\$8,868	\$1,258		\$5,319	\$0	(\$181)	(\$187)	\$4,952	\$11,165
22	2042	33,986	kWh	84%	17.74%	\$0.1215	\$4,130	\$9,090	\$1,289		\$5,419	\$0	(\$185)	(\$190)	\$5,044	\$16,209
23	2043	33,714	kWh	84%	17.60%	\$0.1245	\$4,199	\$9,317	\$1,322		\$5,521	\$0	(\$189)	(\$194)	\$5,138	\$21,347
24	2044	33,444	kWh	83%	17.46%	\$0.1277	\$4,270	\$9,550	\$1,355		\$5,624	\$0	(\$192)	(\$198)	\$5,234	\$26,581
25	2045	33,176	kWh	82%	17.32%	\$0.1309	\$4,341	\$9,789	\$1,389		\$5,730	\$0	(\$196)	(\$202)	\$5,332	\$31,913
26	2046	32,911	kWh	82%	17.18%	\$0.1341	\$4,414	\$10,034	\$1,423		\$5,838	\$0	(\$200)	(\$206)	\$5,431	\$37,344
27	2047	32,648	kWh	81%	17.04%	\$0.1375	\$4,488	\$10,284	\$1,459		\$5,947	\$0	(\$204)	(\$210)	\$5,533	\$42,877
28	2048	32,387	kWh	81%	16.91%	\$0.1409	\$4,564	\$10,541	\$1,495		\$6,059	\$0	(\$208)	(\$214)	\$5,637	\$48,513
29	2049	32,127	kWh	80%	16.77%	\$0.1444	\$4,640	\$10,805	\$1,533		\$6,173	\$0	(\$212)	(\$219)	\$5,742	\$54,256
30	2050	31,870	kWh	79%	16.64%	\$0.1480	\$4,718	\$11,075	\$1,571		\$6,290	\$0	(\$217)	(\$223)	\$5,850	\$60,106
	Assumed	Percentage of De	amand									COSTS AND F	NANCING			
	Assumed	Charge Reduc		1/ 10%												
		charge Reduc		14.19%									, ,	contingency, other	\$82,621	
												owner expenses				
	* Estimated De	emand Charge Red	duction	assume	s potentia	al reduction of	f total					Grants, Rebates	No-Obligation	Funds	\$0	

Potential Revenue Value

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nele.gov/docs/fy12rost/69016.pdf
** Escalation rate recommended to be based on EIA bat Browser 10 year State history: https://www.eia.gov/dectrictiv/data/forwser/
Note: All information provided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

Total Lifetime Project Costs	\$109,221
SAVINGS	
Total Lifetime Project Savings	\$169,327
OUTCOMES	
Net Lifetime Project Costs or Savings	\$60,106

\$11,410

\$15,190

Total Interest Payments

year)

Operational Expense Allowance (insurance, O+M, 30-

Total Project	: Cost Payback (Years)		19.4	Years
Value to Cos	t Ratio		1.55	to 1.0
Electricity Pr	oduction (kWh, 30-year)		1,076,811	kWh
Percent of E	lectricity Usage Covered by Solar	(Year	21.00%	

Police Department

Concept Design

The roof configuration of the Police building is moderately well suited for solar PV installation, with good orientation, and overall configuration, and only moderate rooftop equipment obstruction.

The rooftop array is not capable of offsetting all of the electricity used on site. The rooftop array's first year generation is estimated to offset approximately 54% of the site's current reported electricity consumption. To meet the site's full annual use an additional ground mounted array is required. The site area to the west of the facility and parking lot is well suited for a ground mounted solar array meeting 58% or more of the site's annual electric use. The combined arrays included in this concept can provide an estimated 112% of the site's total electric use, making the site Net Zero electricity.

Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.79:1 ratio (1.74 for rooftop, 1.84 for ground). As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.01 less than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

paleBLUEdotuc

COSTS AND FINANCING (Rooftop Array)

Total Installed Array Cost (incl. contingency, other owner expenses)	\$179,228
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$24,752
Operational Expense Allowance (insurance, O+M, 30- year)	\$37,999
Total Lifetime Project Costs	\$241,979

Total Lifetime Project Savings	\$420,764

OUTCOMES

Net Lifetime Project Costs or Savings	\$178,785	
Total Project Cost Payback (Years)	17.3	Years
Value to Cost Ratio	1.74	to 1.0
Electricity Production (kWh, 30-year)	2,917,535	kWh
Percent of Electricity Usage Covered by Solar (Year	54.75%	

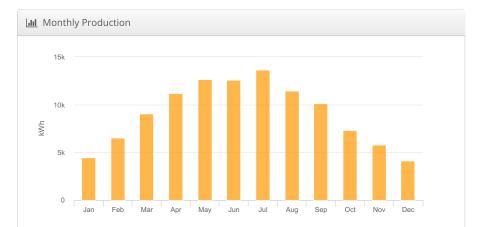
COSTS AND FINANCING (Ground Mounted Array)

Total Installed Array Cost (incl. contingency, other owner expenses)	\$176,232
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$24,338
Operational Expense Allowance (insurance, O+M, 30- year)	\$38,136
Total Lifetime Project Costs	\$238,707
SAVINGS	
Total Lifetime Project Savings	\$440,719

Net Lifetime Project Costs or Savings \$202,012 Total Project Cost Payback (Years) 16.2 Yalue to Cost Ratio 1.85 Electricity Production (kWh, 30-year) 3,091,516 kWh Percent of Electricity Usage Covered by Solar Years

Recommended Site Priority:

Note, values do not include social cost of carbon avoided by the solar array.



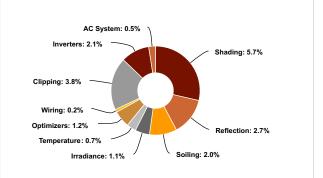
Design 1 City of Northfield Police Department, 1615 Riverview Drive, Northfield, MN

🖋 Report	
Project Name	City of Northfield Police Department
Project Address	1615 Riverview Drive, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

LII System Metrics							
Design	Design 1						
Module DC Nameplate	83.0 kW						
Inverter AC Nameplate	64.0 kW Load Ratio: 1.30						
Annual Production	109.0 MWh						
Performance Ratio	81.4%						
kWh/kWp	1,314.1						
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)						
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751						

Output

1,394.3


1,613.7

1,521.1

% Delta

15.7% -5.7%

• Sources of System Loss

Irradiance (kWh/m²) Karlow (

Annual Production

Irradiance after Reflection	1,479.5	-2.7%
Irradiance after Soiling	1,449.9	-2.0%
Total Collector Irradiance	1,449.4	0.0%
Nameplate	120,112.2	
Output at Irradiance Levels	118,844.9	-1.1%
Output at Cell Temperature Derate	118,028.1	-0.7%
Output After Mismatch	118,027.9	0.0%
Optimizer Output	116,586.8	-1.2%
Optimal DC Output	116,350.3	-0.2%
Constrained DC Output	111,874.0	-3.8%
Inverter Output	109,551.0	-2.1%
Energy to Grid	109,004.0	-0.5%
etrics		
Avg. Operating Ambient Temp		10.1 °C
Avg. Operating Cell Temp		16.7 °C
ics		
	Operating Hours	4673
	Solved Hours	4673
	Irradiance after Soiling Total Collector Irradiance Nameplate Output at Irradiance Levels Output at Cell Temperature Derate Output After Mismatch Output After Mismatch Output After Mismatch Output After Mismatch Output After Mismatch Optimal DC Output Constrained DC Output Inverter Output Inverter Output Avg. Operating Ambient Temp Avg. Operating Cell Temp	Irradiance after Soiling1,449.9Intradiance after Soiling1,449.9Intradiance Intradiance1,449.4Intradiance Intradiance1,20,112.2Intradiance Levels1,18,844.9Intradiance Levels1,18,028.1Intradiance Intradiance Intradiance1,18,028.1Intradiance Intradiance Intradiance1,18,028.1Intradiance Intradiance Intradiance1,118,028.1Intradiance Intradiance Intradiance Intradiance1,118,028.1Intradiance Intradiance Intradiance Intradiance Intradiance1,118,028.1Intradiance Intradiance Intradiance Intradiance Intradiance1,118,028.1Intradiance Intradiance Intradiance Interpret Intradiance1,118,028.1Intradiance Intradiance Interpret I

Condition Set																
Description	Cond	dition	Set 1													
Weather Dataset	TMY	, 10kn	n grid (4	44.	45,-	93.1	5), NI	REL	. (pi	rosp	ecto	or)				
Solar Angle Location	Mete	eo Lat	/Lng													
Transposition Model	Pere	z Moc	lel													
Temperature Model	Sanc	lia Mc	del													
	Rack	к Туре			а		b				Te	mper	atu	re D	elta	
Temperature Model Parameters	Fixe	d Tilt			-3.	56	-0	0.07	75		3°	С				
	Flus	h Moւ	unt		-2.	81	-0	0.04	455	_	0°	C				
Soiling (%)	J	F	М	,	A	Μ	J		J		A	S	1	0	Ν	D
	2	2	2		2 2		2	2	2		2	2		2	2	2
Irradiation Variance	5%															
Cell Temperature Spread	4° C															
Module Binning Range	-2.5%	% to 2.	5%													
AC System Derate	0.50	%														
Module Characterizations	Mod	lule					Uploa By	ade	d	Cha	arac	teriza	zation			
		I-350 (iene li	Mar18) nc))			Folso Labs	m				e_72N ar201	2M- 018.pan, PAN			
Comment	Devi	ce							Up	load	ed E	By	Ch	arac	terizat	ion
Component Characterizations	P40	0 NA (SolarEc	lge	≥)				Fo	lsom	Lal	os	Mf	g Sp	ec Sh	eet
	SE2	7.6K D	elta Gr	id	(Sol	arEc	lge)		Fo	lsom	Lal	os	Sp	ec S	heet	

© 2020 Folsom Labs

Annual Production Report produced by Del McNally

🕀 Components						
Component	Name	Count				
Inverters	SE27.6K Delta Grid (SolarEdge)	4 (64.0 kW)				
Strings	10 AWG (Copper)	14 (1,621.5 ft)				
Optimizers	P400 NA (SolarEdge)	237 (94.8 kW)				
Module	Heliene Inc, 72M-350 (Mar18) (350W)	237 (83.0 kW)				

🚠 Wiring Zor	nes								
Description		Combiner Poles		Str	ing Size	Stringing	Strategy		
Wiring Zone		12		9-1	7	Along Rac	king		
(
III Field Segm	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	117	117	41.0 kW
Field Segment 2	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	5	5	1.75 kW
Field Segment 3	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	5	5	1.75 kW
Field Segment 4	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	110	110	38.5 kW

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Police 1615 Riverview Drive Rooftop Date 5/9/2020

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	2,917,535	kWh
				Total Electricity Bill Savings	\$420,764	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
83.00	Array Size (kW DC)	199,070	Total Annual Electric Use (kWh)	Allowance for annual expenses and financin	g costs excluded	
350	Watt Rating	444.00	Total Annual Demand (kW)	Capital Cost	\$179,228	
237	Number of Solar Modules (Roof)	20,000	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
0	Number of Solar Modules (Ground)	65.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$179,228	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	12.78	Years
64.00	Capacity (kW AC)	9.95	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	100%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$15,570.63	Annual Energy Charge (\$)	Financed Capital Cost	\$203,980	
109,000	First Year Generation (kWh)	\$4,656.00	Annual Demand Charge (\$)	Financed Capital Payback	14.54	Years
\$171,381.96	Total Contractor Bid	\$20,226.63	Total Annual Electric Cost	Financed Array Lifetime Payback		
\$0.00	Other Owner Expenses (legal, etc.)	\$0.0782	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and f	inancing costs included.	
\$7,846.36	Owner Contingency (if any)	\$10.49	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$37,999	
\$179,228.32	Total Project Budget	37.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$241,979	
\$2.16	Total Cost Per Watt	Financial		Financed Array Lifetime Payback	17.25	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$35,845.66	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1442	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.0829	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0613	
\$4.20	Annual O+M Costs (per kW DC)	\$143,382.65	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.74	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$10,500	Inverter Replacement Cost	10	Loan/Bond Term (assumed)			
		reported rate per kWh.	ectric Use and may differ from utility b be based on EIA Data Browser 10			

с wy 6А6:еууРу е z					5D2Yu 275	paleBLUEdotur
bxy zYu' xyNx'y 2fucic ywc vwfyw				POau	y uyOu uw	C83
ayEO uy yxyx uybxyzYu' xyuxuyyu uy 7568 uuuyu'y xyxvyau ueyyuvyQy'Xuvu 1 xzy w xwyuxywuyx 7575 xu3M zu yu				lyu 6Sy yu	ı с у w	65D55
Mwy E 5		O Uxwy	Yuyu 6365) v yx 355 fhN	c Qe OQa g
P QF Oeld glib a		du	h M	c yw O	gbgMX	gb gMX
MPY Lailige Mglbra Obfgf					85	5355(
XQ\$ MX1RblOMX) MPY Lat blge Mgbil C		5	7: 55	85		
XMa P Md Oh 비비녜비 a		5	5	85		
XMaPfMXQ2QkblgdalSfgehOgheQf		5	5	85		
fbUX NbelaiSf		5	9755	85		
fhei Q		5	8: 55	85		
	eu '				86: AD7B	CB3 A(
ciYxy2ez -Tyyy8:5j.	8: 5	78B	6CD			7C39D(
ciYxy2SxY-Tyyy8:5j.	8: 5	5	6CD			5355(
ciYxy2Ou 4cu '-Tyyy8:5j.	8: 5	5	6CD			5355(
Uуу		6	D685			: 307(
b y		78B	A5			DBSA(
f w uNbf		6	5			5355(
Qyw wu Nbf		6	67BC7			C35: (
euw '2e z		6	68ACB			C387(
euw '2S xY		6	5			5355(
euw '2Ou		6	5			5355(
fuy gu		6	5			5355(
U u u Xuv		6	66CAD			B3 A(
fyRyw'		5	6:	85		5355(
fySux '		5	76BC5			5355(
e zcuw4eyu		6	9CBD			8366(
N x 'ey u 2a Uw xyx		5	5			5355(
TuYuey u2a Uwxyx		5	5			5355(
cy '1U yw 1U yw yw		6	D685			: 307(
NxO 'yw		6	DBA8			A377(
b y yux		6	688BD			C3 8(
C Z		6	688BD	&6818BD		C3 8(
PQiQXbcQebiQeTQMPMaPcebRQffUbaMXRQQf					8691) ::	C35B(
cebOheQYQagYMaMSQYQag2b у eyyyu y4c w у у Yuu	ґуу			&81D78		
cebOheQYQagYMaMSQYQag2Py '4N x cuwu'y				&81D78		
cebOheQYQagYMaSQYQag2h c ywgy Pyy u - yw	yw 1 wy	1uxuzz.		896:		
QaSbalQQebalS2f w uM y y				891CBD		
QaSbalQQebalS2f w uYxzwu - w xyx.				85		
Qa S la QQe la S 20				85		
ey v uvyQ y y				861869		
					00.004	036
Obaglal S QaOl bjaQe\$fcebVQQqObaqlal S QaOl				&B1C9A	&B1C9A	9 3 8C(
oja vezi celo kvy oba yka ska ol				OD C9A		

OWNEF 0

OWNER 0
PROJ: Police
LCC: 1615 Riverview Drive
TITLE: Rooftop
TITLE: Rooftop
30-Vear Energy Qutput Calcs
Note: Energy generation projections are SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

109.0

199.1 65%

DC Nameplate Capacity Year 1 Generation Projection (MWH)

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Energy Generation Schedule (Based on Predicted Loss)					5)	Potential Revenue Value							Simplified Cash Flow Projection				
							Energy		Estimated								
						Utility	Savings	Utility	Potential			Cash					
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted	
Operation	Calendar	Annual Energy		1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash	
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow	
real	2021	109,000	kWh	100%	54.75%	\$0.0782	\$8,526	\$4,656	\$2,089	\$0	\$10,615	(\$52,659)	(\$332)	(\$349)	(\$42,725)	(\$42,725)	
1	2021	109,000	kWh	99%	54.75% 54.32%	\$0.0782	\$8,669	\$4,050	\$2,089	\$0 \$0	\$10,815	(\$16,813)	(\$332)	(\$356)	(\$6,698)	(\$49,423)	
2	2022	108,128	kWh	99% 98%	54.32% 53.88%	\$0.0802	\$8,809	\$4,772 \$4,892	\$2,141 \$2,195	\$0 \$0	\$10,810 \$11,009	(\$16,813)	(\$339)	(\$363)	(\$6,512)	(\$55,935)	
3	2023	107,263	kWh	98% 98%	53.88% 53.45%	\$0.0822	\$8,963	\$4,892 \$5,014	\$2,195	\$0 \$0	\$11,009	(\$16,813)	(\$352)	(\$370)	(\$6,324)	(\$62,259)	
4	2024	105,554	kWh	97%	53.02%	\$0.0842	\$9,113	\$5,139	\$2,230	\$0	\$11,419	(\$16,813)	(\$359)	(\$377)	(\$6,131)	(\$68,390)	
5	2025	105,554	kWh	97%	53.02% 52.60%	\$0.0863 \$0.0885	\$9,113	\$5,139	\$2,306	\$0 \$0	\$11,419 \$11,630	(\$16,813)	(\$359)	(\$385)	(\$5,935)	(\$74,325)	
7	2020	103,872	kWh		52.00%	\$0.0883	\$9,200	\$5,200	\$2,505	\$0 \$0	\$11,844	(\$16,813)	(\$374)	(\$393)	(\$5,735)	(\$80,061)	
,	2027	103,041	kWh	95%	51.76%	\$0.0930	\$9,580	\$5,535	\$2,483	\$0	\$12,063	(\$16,813)	(\$381)	(\$400)	(\$5,532)	(\$85,593)	
° 9	2028	102,216	kWh		51.35%	\$0.0953	\$9,580	\$5,673	\$2,545	\$0 \$0	\$12,286	(\$16,813)	(\$389)	(\$408)	(\$5,325)	(\$90,917)	
10	2029	102,210	kWh		50.94%	\$0.0933	\$9,905	\$5,815	\$2,609	\$0	\$12,514	(\$16,813)	(\$397)	(\$417)	(\$5,113)	(\$96,031)	
10	2030	100,587	kWh	92%	50.54%	\$0.1001	\$10,071	\$5,960	\$2,609	ŞU	\$12,745	\$0	(\$405)	(\$425)	\$11,916	(\$84,115)	
12	2031	99,783	kWh	92%	50.12%	\$0.1001	\$10,071	\$6,109	\$2,741		\$12,981	\$0	(\$413)	(\$433)	\$12,135	(\$71,980)	
13	2032	98,984	kWh	91%	49.72%	\$0.1020	\$10,240	\$6,262	\$2,809		\$13,222	\$0	(\$421)	(\$442)	\$12,359	(\$59,621)	
14	2033	98.192	kWh	90%	49.33%	\$0.1078	\$10,587	\$6,418	\$2,880		\$13,467	\$0	(\$429)	(\$451)	\$12,587	(\$47,035)	
15	2034	97.407	kWh	89%	48.93%	\$0.11078 \$0.1105	\$10,765	\$6,579	\$2,952		\$13,717	\$0	(\$438)	(\$460)	\$12,819	(\$34,216)	
16	2036	96.628	kWh	89%	48.54%	\$0.1133	\$10,946	\$6,743	\$3,025		\$13,971	\$0	(\$447)	(\$469)	\$13,055	(\$21,161)	
17	2030	95,855	kWh	88%	48.15%	\$0.1161	\$11,130	\$6,912	\$3,101		\$14,231	\$0	(\$456)	(\$479)	\$13,297	(\$7,864)	
18	2038	95.088	kWh	87%	47.77%	\$0.1190	\$11,317	\$7,085	\$3,179		\$14,496	\$0	(\$465)	(\$488)	\$13,543	\$5,679	
19	2030	94.327	kWh	87%	47.38%	\$0.1220	\$11,507	\$7,262	\$3,258		\$14,765	\$0	(\$474)	(\$498)	\$13,793	\$19,472	
20	2035	93,573	kWh	86%	47.00%	\$0.1250	\$11,700	\$7,443	\$3,339		\$15,040	\$0	(\$484)	(\$11,007)	\$3,549	\$23,020	
21	2040	92.824	kWh		46.63%	\$0.1282	\$11,897	\$7.629	\$3,423		\$15,320	\$0	(\$493)	(\$508)	\$14,319	\$37,339	
22	2042	92.081	kWh	84%	46.26%	\$0.1314	\$12,097	\$7.820	\$3,508		\$15,605	ŝo	(\$503)	(\$518)	\$14,584	\$51,923	
23	2042	91.345	kWh	84%	45.89%	\$0.1347	\$12,300	\$8.016	\$3,596		\$15,896	\$0	(\$513)	(\$528)	\$14,855	\$66,778	
24	2044	90,614	kWh	83%	45.52%	\$0.1380	\$12,507	\$8,216	\$3,686		\$16,193	\$0	(\$524)	(\$539)	\$15,130	\$81,908	
25	2045	89,889	kWh	82%	45.15%	\$0.1415	\$12,717	\$8,421	\$3,778		\$16,495	\$0	(\$534)	(\$550)	\$15,411	\$97,320	
26	2046	89,170	kWh	82%	44.79%	\$0.1450	\$12,930	\$8,632	\$3,873		\$16,803	\$0	(\$545)	(\$561)	\$15,698	\$113,018	
27	2047	88,457	kWh	81%	44.43%	\$0.1486	\$13,148	\$8,848	\$3,970		\$17,117	\$0	(\$556)	(\$572)	\$15,990	\$129,007	
28	2048	87,749	kWh	81%	44.08%	\$0.1524	\$13,369	\$9,069	\$4,069		\$17,437	\$0	(\$567)	(\$583)	\$16,287	\$145,295	
29	2049	87.047	kWh	80%	43.73%	\$0.1562	\$13,593	\$9,296	\$4,170		\$17,764	\$0	(\$578)	(\$595)	\$16,591	\$161,885	
30	2050	86.351	kWh	79%	43.38%	\$0.1601	\$13,822	\$9,528	\$4,275		\$18.096	ŝo	(\$590)	(\$607)	\$16,900	\$178,785	

Assumed Percentage of Demand Charge Reduction*: 44.86%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NRE report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note:-all information pervoided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

COSTS AND FINANCING

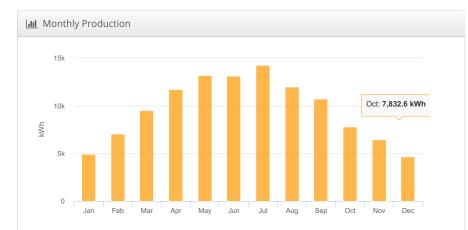
Total Installed Array Cost (incl. contingency, other owner expenses)	\$179,228
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$24,752
Operational Expense Allowance (insurance, O+M, 30- year)	\$37,999
Total Lifetime Project Costs	\$241,979
SAVINGS	

Total Lifetime Project Savings

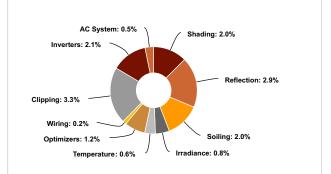
OUTCOMES

Net Lifetime Project Costs or Savings		\$178,785	
Total Project Cost Payback (Years)		17.3	Years
Value to Cost Ratio		1.74	to 1.0
Electricity Production (kWh, 30-year)		2,917,535	kWh
Percent of Electricity Usage Covered by Solar	(Year	54.75%	

\$420,764



Ground mounted City of Northfield Police Department, 1615 Riverview Drive, Northfield, MN


📌 Report	
Project Name	City of Northfield Police Department
Project Address	1615 Riverview Drive, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

LILI System Metrics							
Design	Ground mounted						
Module DC Nameplate	83.3 kW						
Inverter AC Nameplate	66.6 kW Load Ratio: 1.25						
Annual Production	115.5 MWh						
Performance Ratio	85.9%						
kWh/kWp	1,386.8						
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)						
Simulator Version	edef351a35-38368f3ee3-9050205824- c43eec09b7						

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,613.7	15.79
Irradiance	Shaded Irradiance	1,582.2	-2.0%
(kWh/m²)	Irradiance after Reflection	1,535.9	-2.9%
	Irradiance after Soiling	1,505.2	-2.0%
	Total Collector Irradiance	1,505.3	0.0%
	Nameplate	126,128.3	
	Output at Irradiance Levels	125,106.9	-0.89
	Output at Cell Temperature Derate	124,337.1	-0.6%
	Output After Mismatch	124,336.7	0.0%
Energy (kWh)	Optimizer Output	122,843.0	-1.29
(((((()))))))))))))))))))))))))))))))))	Optimal DC Output	122,585.3	-0.29
	Constrained DC Output	118,550.1	-3.3%
	Inverter Output	116,100.0	-2.19
	Energy to Grid	115,520.0	-0.5%
Temperature M	letrics		
	Avg. Operating Ambient Temp		10.1 °(
	Avg. Operating Cell Temp		17.0 °(
Simulation Met	rics		
		Operating Hours	467
		Solved Hours	467

Condition Set													
Description	Con	Condition Set 1											
Weather Dataset	TMY	TMY, 10km grid (44.45,-93.15), NREL (prospector)											
Solar Angle Location	Mete	Meteo Lat/Lng											
Transposition Model	Pere	z Mo	del										
Temperature Model	Sand	dia Mo	odel										
	Racl	к Туре			a	b		Те	empei	ature	Delta		
Temperature Model Parameters	Fixe	d Tilt			-3.56	-0.	075	3	°C				
	Flus	Flush Mount			-2.81	-0.	0455	0	0°C				
Soiling (%)	J	F	М	,	A M	J	J	A	S	0	N	D	
0	2	2	2	:	2 2	2	2	2	2	2	2	2	
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.59	% to 2	.5%										
AC System Derate	0.50	%											
Madula Chausstaniantiana	Mod	lule			Uploa By	Characterization							
Module Characterizations		1 490 iene)			Folsor Labs	n	Spe PAN		heet Characterization,				
	Dev	ice				Uplo	Uploaded By		Cha	Characterization			
Component Characterizations	P40	0 NA	(SolarE	dg	ge)	Fols	om La	bs	os Mfg Spec Sheet				
	SE3	3.3K (SolarE	dg	e)	Fols	om La	bs	Spe	ec She	et		

🖨 Components							
Component	Name	Count					
Inverters	SE33.3K (SolarEdge)	2 (66.6 kW)					
Strings	10 AWG (Copper)	7 (755.5 ft)					
Optimizers	P400 NA (SolarEdge)	170 (68.0 kW)					
Module	Heliene, 96M 490 (490W)	170 (83.3 kW)					

🛔 Wiring Zor	nes								
Description		Combiner Poles		Str	ing Size	Stringing Strategy			
Wiring Zone		12		16-	-25	Along Rac	king		
III Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	180°	11.4 ft	2x1	85	170	83.3 kV

Oetailed Layout

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Police 1615 Riverview Drive Groundmounted 1 Date 5/8/2020

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	3,091,516	kWh
				Total Electricity Bill Savings	\$440,719	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
83.30	Array Size (kW DC)	199,070	Total Annual Electric Use (kWh)	Allowance for annual expenses and financin	g costs excluded	
490	Watt Rating	444.00	Total Annual Demand (kW)	Capital Cost	\$176,232	
0	Number of Solar Modules (Roof)	20,000	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
170	Number of Solar Modules (Ground)	65.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$176,232	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric	Simple Project Payback	12.00	Years
66.60	Capacity (kW AC)	9.95	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	100%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$15,570.63	Annual Energy Charge (\$)	Financed Capital Cost	\$200,570	
115,500	First Year Generation (kWh)	\$4,656.00	Annual Demand Charge (\$)	Financed Capital Payback	13.65	Years
\$168,452.90	Total Contractor Bid	\$20,226.63	Total Annual Electric Cost	Financed Array Lifetime Payback		
\$0.00	Other Owner Expenses (legal, etc.)	\$0.0782	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and	financing costs included.	
\$7,779.37	Owner Contingency (if any)	\$10.49	Effective Demand Charge	30 year Operational Expense Allowance (ins/O+M)	\$38,136	
\$176,232.27	Total Project Budget	37.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$238,707	
\$2.12	Total Cost Per Watt	Financial	-	Financed Array Lifetime Payback	16.25	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$35,246.45	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1426	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.0772	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0653	
\$4.20	Annual O+M Costs (per kW DC)	\$140,985.81	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.85	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$10,537	Inverter Replacement Cost	10	Loan/Bond Term			
		reported rate per kWh.	ectric Use and may differ from utility o be based on EIA Data Browser 10			

j AFAEm U Y A					:H7/78:	paleBLUEdotur
if S7njrjjn				UT g	т	HC8C
ayEO uy yxyx uybxy zYu'xyuxuy y u u y3O 756B u uuyu'y xyxv yau ueyyuvyQy'Xuvu 1 xzyx w xwyuxywuuyx 7575x u3M z u y u		y uyvuyx w		u AY	j	AAE&E
Mwy E 5		Υι Τ b 633		Xuv 6365	O v yx 6365	
UVnTmbjobig		I	p R	ј Т	np S oi oRe	jVmTVgo oioRe
RUf bgbnomRobig Tinon					-:	:8:.
XQ\$ MK1RUFONK) MPY Lail Lifige Mgill Q		5	7: 55	88	5	
XWa P Md Oh ୋଡୁbb a		5	5	84	5	
XMaPfMXQ2QkblgbaSfgehOgheQf		5	5	84	5	
fbUXNbelaiSf		5	9755	88		
fhei Q		5	8: 55	88	5	
bynoReeRobig Tinon jueu					- AEEÆHG	HH88I.
ci Y x y 2e z -Ty y y8:5j .	9D5	5	7A9	84		5355(
ciYxy2SxY -Tyyy8:5j.	9D5	6B5	7A9	8991CD		7C3CA(
ciYxy2Ou 4cu '-Tyyy8:5j.	9D5	5	7A9	84		5355(
Uyy		6	D6A8	&D16A8	В	: 3CD(
b y		6B5	A5	865175	5	A3 A(
f w uNbf		6	5	84	5	5355(
Qyw wu Nbf		6	67C7C	8671070	C	C37: (
euw '2e z		6	5	88	5	5355(
euw '2S xY		6	68B9:	&68 1 89:		C3C8(
euw '2Ou		6	5	84		5355(
fuy gu		6	5	82		5355(
Uuu Xuv		6	66D67	8661D67		B3AA(
fyRyw'		9DC	6:	&B19B5		9 3 .5(
fySux '		5	76BC5	84		5355(
e zcuw4eyu		6	5	84 84		5355(
Nx'ey u 2a Uwxyx TuYuey u2a Uwxyx		5 5	5	84		5355(5355(
cy '10 yw 10 yw yw		6	D6A8	&D16A		: 3CD(
NxO 'yw		6	DABD	&D1ABI		A377(
b y yux		6	687A9	8687A		C3 8(
c z		6	687A9	&6817A9		C3 8(
UVr Vei jVmi rVma VRU RgU jmi WV/nnbi gRe WV/n					- ABGHFE	G8C: .
cebOheQYQagYMaM5QYQag2b y eyyyu y4c w y y Yuu'yy				&81CD		
ceb OheQYQagYMaMSQYQag2Py '4N x cuw u'y				881CD	5	
cebOheQYQagYMaSQYQag2h c ywgy Pyy u - yw yw	1 wy	1ux uzz		8961	В	
QaSbalQQebalS2f w uM y y	-			84	5	
QaSbalQQebalS2f w uYxzwu - w xyx.				84	5	
Qa S lai QQe lai S 20				&81 5		
ey v uvyQ y y				&616B	5	
					- G 6GGI	D&DA.
Tigobg Y Vg Tu bja Qe≸ ceb VQOg Obaglal SQa Ol				&B1BBI		Dadia.
a cara con rang on a gui a cara					-	

OWNEF 0

OWNER C PROI: Police LGL: 1615 Riverview Drive TITLE: Groundmounted 1 30-Year Energy Output Calcs More: Energy Generation projections are I SO-TEAT Energy Quiput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

					Assumed End	Annual Site E ergy Use During Solar	nergy Use (MWH) Production Hours	199.1 65%
Potential R	evenue Valu	ie			Sim	plified Cash Flow F	Projection	
Utility	Potential			Cash				
Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
	Reduction	Payment				Costs	Annual Cash Flow	Flow
(annual)			Bill Savings	Payment	Insurance			
\$4,656	\$2,096	\$0 \$0	\$11,131	(\$51,779) (\$16,532)	(\$333)	(\$350)	(\$41,331) (\$5,894)	(\$41,331)
\$4,772 \$4,892	\$2,149 \$2,203	\$0 \$0	\$11,335 \$11,543	(\$16,532)	(\$340) (\$347)	(\$357) (\$364)	(\$5,700)	(\$47,226)
	\$2,203 \$2,258	\$0 \$0		(\$16,532)			(\$5,503)	(\$52,926)
\$5,014 \$5,139	\$2,258 \$2,314	\$0 \$0	\$11,755 \$11,971	(\$16,532)	(\$354) (\$361)	(\$371) (\$379)	(\$5,301)	(\$58,429) (\$63,730)
\$5,268	\$2,314	\$0 \$0	\$12,191	(\$16,532)	(\$368)	(\$386)	(\$5,096)	(\$68,826)
\$5,400	\$2,372	\$0 \$0	\$12,415	(\$16,532)	(\$375)	(\$394)	(\$4,887)	(\$73,712)
\$5,535	\$2,492	\$0 \$0	\$12,644	(\$16,532)	(\$383)	(\$402)	(\$4,673)	(\$78,386)
\$5,673	\$2,554	\$0	\$12,876	(\$16,532)	(\$390)	(\$402)	(\$4,456)	(\$82,842)
\$5,815	\$2,618	\$0 \$0	\$13,114	(\$16,532)	(\$398)	(\$418)	(\$4,235)	(\$87,077)
\$5,960	\$2,684	Ş U	\$13,355	\$0	(\$406)	(\$426)	\$12,523	(\$74,554)
\$6,109	\$2,751		\$13,602	şõ	(\$414)	(\$435)	\$12,753	(\$61,802)
\$6,262	\$2,820		\$13,853	so	(\$423)	(\$444)	\$12,987	(\$48,815)
\$6,418	\$2,890		\$14,109	so	(\$431)	(\$453)	\$13,225	(\$35,590)
\$6,579	\$2,962		\$14,369	şõ	(\$440)	(\$462)	\$13,468	(\$22,122)
\$6,743	\$3,036		\$14,635	şõ	(\$448)	(\$471)	\$13,716	(\$8,406)
\$6,912	\$3,112		\$14,906	so	(\$457)	(\$480)	\$13,968	\$5,562
\$7,085	\$3,190		\$15,182	\$0	(\$467)	(\$490)	\$14,225	\$19,788
\$7,262	\$3,270		\$15,463	so	(\$476)	(\$500)	\$14,488	\$34,275
\$7,443	\$3,352		\$15,750	\$0	(\$485)	(\$11,047)	\$4,217	\$38,492
\$7,629	\$3,435		\$16,042	\$0	(\$495)	(\$510)	\$15,037	\$53,529
\$7,820	\$3,521		\$16,339	\$0	(\$505)	(\$520)	\$15,315	\$68,844
\$8,016	\$3,609		\$16,643	\$0	(\$515)	(\$530)	\$15,597	\$84,441
\$8,216	\$3,699		\$16,952	\$0	(\$525)	(\$541)	\$15,886	\$100,327
\$8,421	\$3,792		\$17,267	\$0	(\$536)	(\$552)	\$16,179	\$116,506
\$8,632	\$3,887		\$17,588	\$0	(\$547)	(\$563)	\$16,479	\$132,985
\$8,848	\$3,984		\$17,916	\$0	(\$558)	(\$574)	\$16,784	\$149,769
\$9,069	\$4,083		\$18,249	\$0	(\$569)	(\$585)	\$17,095	\$166,865
\$9,296	\$4,186		\$18,589	\$0	(\$580)	(\$597)	\$17,412	\$184,277
\$9,528	\$4,290		\$18,936	\$0	(\$592)	(\$609)	\$17,735	\$202,012

				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +			
Operation	Calendar	Annual Energy	y	1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flo
1	2021	115,500	kWh	100%	58.02%	\$0.0782	\$9,034	\$4,656	\$2,096	\$0	\$11,131	(\$51,779)	(\$333)	(\$350)	(\$41,331)
2	2022	114,576	kWh	99%	57.56%	\$0.0802	\$9,186	\$4,772	\$2,149	\$0	\$11,335	(\$16,532)	(\$340)	(\$357)	(\$5,894)
3	2023	113,659	kWh	98%	57.10%	\$0.0822	\$9,340	\$4,892	\$2,203	\$0	\$11,543	(\$16,532)	(\$347)	(\$364)	(\$5,700)
4	2024	112,750	kWh	98%	56.64%	\$0.0842	\$9,497	\$5,014	\$2,258	\$0	\$11,755	(\$16,532)	(\$354)	(\$371)	(\$5,503)
5	2025	111,848	kWh	97%	56.19%	\$0.0863	\$9,657	\$5,139	\$2,314	\$0	\$11,971	(\$16,532)	(\$361)	(\$379)	(\$5,301)
6	2026	110,953	kWh	96%	55.74%	\$0.0885	\$9,819	\$5,268	\$2,372	\$0	\$12,191	(\$16,532)	(\$368)	(\$386)	(\$5,096)
7	2027	110,066	kWh	95%	55.29%	\$0.0907	\$9,984	\$5,400	\$2,431	\$0	\$12,415	(\$16,532)	(\$375)	(\$394)	(\$4,887)
8	2028	109,185	kWh	95%	54.85%	\$0.0930	\$10,152	\$5,535	\$2,492	\$0	\$12,644	(\$16,532)	(\$383)	(\$402)	(\$4,673)
9	2029	108,312	kWh	94%	54.41%	\$0.0953	\$10,322	\$5,673	\$2,554	\$0	\$12,876	(\$16,532)	(\$390)	(\$410)	(\$4,456)
10	2030	107,445	kWh	93%	53.97%	\$0.0977	\$10,495	\$5,815	\$2,618	\$0	\$13,114	(\$16,532)	(\$398)	(\$418)	(\$4,235)
11	2031	106,586	kWh	92%	53.54%	\$0.1001	\$10,672	\$5,960	\$2,684		\$13,355	\$0	(\$406)	(\$426)	\$12,523
12	2032	105,733	kWh	92%	53.11%	\$0.1026	\$10,851	\$6,109	\$2,751		\$13,602	\$0	(\$414)	(\$435)	\$12,753
13	2033	104,887	kWh	91%	52.69%	\$0.1052	\$11,033	\$6,262	\$2,820		\$13,853	\$0	(\$423)	(\$444)	\$12,987
14	2034	104,048	kWh	90%	52.27%	\$0.1078	\$11,219	\$6,418	\$2,890		\$14,109	\$0	(\$431)	(\$453)	\$13,225
15	2035	103,216	kWh	89%	51.85%	\$0.1105	\$11,407	\$6,579	\$2,962		\$14,369	\$0	(\$440)	(\$462)	\$13,468
16	2036	102,390	kWh	89%	51.43%	\$0.1133	\$11,599	\$6,743	\$3,036		\$14,635	\$0	(\$448)	(\$471)	\$13,716
17	2037	101,571	kWh	88%	51.02%	\$0.1161	\$11,794	\$6,912	\$3,112		\$14,906	\$0	(\$457)	(\$480)	\$13,968
18	2038	100,758	kWh	87%	50.61%	\$0.1190	\$11,992	\$7,085	\$3,190		\$15,182	\$0	(\$467)	(\$490)	\$14,225
19	2039	99,952	kWh	87%	50.21%	\$0.1220	\$12,193	\$7,262	\$3,270		\$15,463	\$0	(\$476)	(\$500)	\$14,488
20	2040	99,153	kWh	86%	49.81%	\$0.1250	\$12,398	\$7,443	\$3,352		\$15,750	\$0	(\$485)	(\$11,047)	\$4,217
21	2041	98,359	kWh	85%	49.41%	\$0.1282	\$12,606	\$7,629	\$3,435		\$16,042	\$0	(\$495)	(\$510)	\$15,037
22	2042	97,572	kWh	84%	49.01%	\$0.1314	\$12,818	\$7,820	\$3,521		\$16,339	\$0	(\$505)	(\$520)	\$15,315
23	2043	96,792	kWh	84%	48.62%	\$0.1347	\$13,034	\$8,016	\$3,609		\$16,643	\$0	(\$515)	(\$530)	\$15,597
24	2044	96,018	kWh	83%	48.23%	\$0.1380	\$13,253	\$8,216	\$3,699		\$16,952	\$0	(\$525)	(\$541)	\$15,886
25	2045	95,249	kWh	82%	47.85%	\$0.1415	\$13,475	\$8,421	\$3,792		\$17,267	\$0	(\$536)	(\$552)	\$16,179
26	2046	94,487	kWh	82%	47.46%	\$0.1450	\$13,702	\$8,632	\$3,887		\$17,588	\$0	(\$547)	(\$563)	\$16,479
27	2047	93,731	kWh	81%	47.08%	\$0.1486	\$13,932	\$8,848	\$3,984		\$17,916	\$0	(\$558)	(\$574)	\$16,784
28	2048	92,982	kWh	81%	46.71%	\$0.1524	\$14,166	\$9,069	\$4,083		\$18,249	\$0	(\$569)	(\$585)	\$17,095
29	2049	92,238	kWh	80%	46.33%	\$0.1562	\$14,404	\$9,296	\$4,186		\$18,589	\$0	(\$580)	(\$597)	\$17,412
30	2050	91,500	kWh	79%	45.96%	\$0.1601	\$14,646	\$9,528	\$4,290		\$18,936	\$0	(\$592)	(\$609)	\$17,735

Energy

Savings

Utility

Assumed Percentage of Demand Charge Reduction*: 45.03%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that U3/ard of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.neel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/delectricity/data/browser/ Note: All information provided is intended as a good-faith order of magnitude estimation of costs and benefit swiles. Impacts of potential Investment Tax Incentive or depreciation benefits which may be leveraged through 3d party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

COSTS AND FINANCING

Total Installed Array Cost (incl. contingency, other \$176,232 owner expenses) Grants, Rebates, No-Obligation Funds \$0 Total Interest Payments \$24,338 Operational Expense Allowance (insurance, O+M, 30-\$38,136 year) Total Lifetime Project Costs \$238,707 SAVINGS

Total Lifetime Project Savings

OUTCOMES

Net Lifetime Project Costs or Savings		\$202,012	
Total Project Cost Payback (Years)		16.2	Years
Value to Cost Ratio		1.85	to 1.0
Electricity Production (kWh, 30-year)		3,091,516	kWh
Percent of Electricity Usage Covered by Solar	(Year	58.02%	

\$440,719

115.5

DC Nameplate Capacity Year 1 Generation Projection (MWH)

Waste Water Treatment Plant

Concept Design

The roof configuration of the primary Waste Water Treatment Plant (WWTP) site are well suited for solar PV installation, with good orientation, overall configuration, and minimal rooftop equipment obstruction.

The rooftop arrays supported by the available roof area are not capable of offsetting all of the electricity used on site. The rooftop array's first year generation is estimated to offset approximately 6% of the site's current reported electricity consumption. On-site renewable energy capacity can be increased through the introduction of a ground mounted array. The primary portion of the site appears inappropriate for significant ground mounted arrays while the Eastern portion of the site is partially wooded, within the flood plain of the river. The Eastern portion of the site is also anticipated for future wastewater treatment locations . With these considerations in mind, a ground mounted array is not currently recommended.

Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance

The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.52:1 ratio. As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at the same cost as achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance

This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax

Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

COSTS AND FINANCING (Rooftop Array)

Total Installed Array Cost (incl. contingency, other owner expenses)	\$340,197
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$46,982
Operational Expense Allowance (insurance, O+M, 30- year)	\$73,892
Total Lifetime Project Costs	\$461,071

SAVINGS

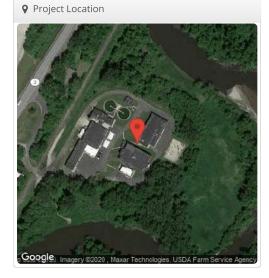
Total Lifetime Project Savings	\$701,490
J	

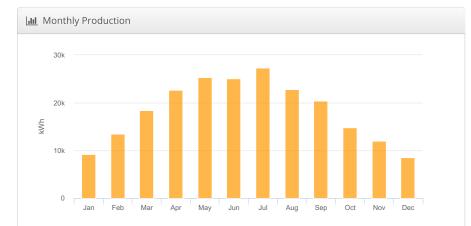
OUTCOMES

Net Lifetime Project Costs or Savings	\$240,420	
Total Project Cost Payback (Years)	19.7	Years
Value to Cost Ratio	1.52	to 1.0
Electricity Production (kWh, 30-year)	5,888,602	kWh
Percent of Electricity Usage Covered by Solar (Year	6.14%	

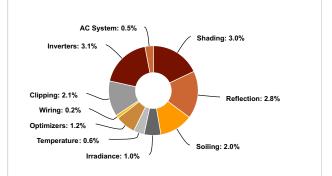
Note, values do not include social cost of carbon avoided by the solar array.

Recommended Site Priority:





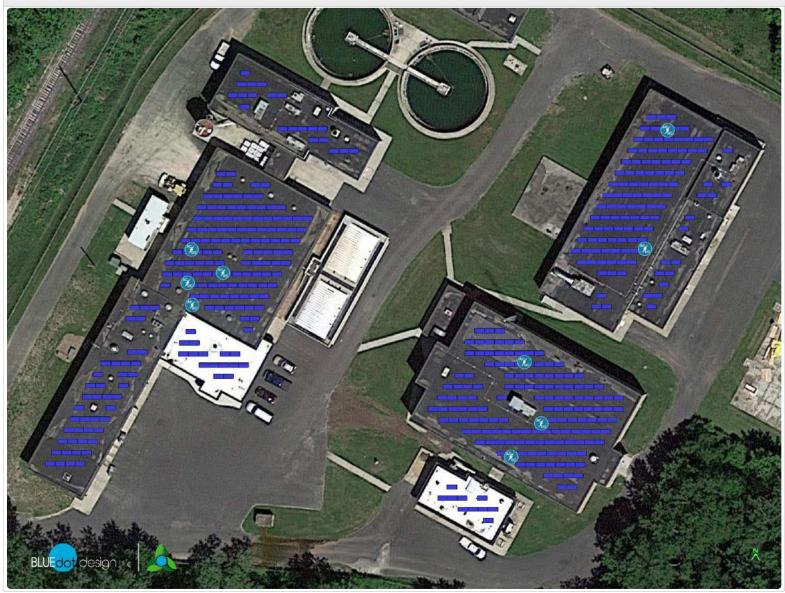
Design 1 City of Northfiled Wastewater Treatment Plant, 1450 Highway 3 North, Northfield, MN


🖋 Report	
Project Name	City of Northfiled Wastewater Treatment Plant
Project Address	1450 Highway 3 North, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lill System Metrics								
Design	Design 1							
Module DC Nameplate	161.4 kW							
Inverter AC Nameplate								
Annual Production	220.0 MWh							
Performance Ratio	84.5%							
kWh/kWp	1,363.8							
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)							
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751							

• Sources of System Loss

	Description	Output	% Delta					
	Annual Global Horizontal Irradiance	1,394.3						
	POA Irradiance	1,613.7	15.7%					
Irradiance	Shaded Irradiance	1,565.7	-3.0%					
(kWh/m²)	Irradiance after Reflection	1,521.2	-2.89					
	Irradiance after Soiling	1,490.7	-2.0%					
	Total Collector Irradiance	1,490.6	0.0%					
	Nameplate	240,287.4						
	Output at Irradiance Levels	237,879.1	-1.09					
	Output at Cell Temperature Derate	236,369.9	-0.69					
_	Output After Mismatch	236,369.6	0.0%					
Energy (kWh)	Optimizer Output	233,530.1	-1.29					
((((())))))))))))))))))))))))))))))))))	Optimal DC Output	233,086.7	-0.29					
	Constrained DC Output	228,128.4	-2.19					
	Inverter Output	221,147.0	-3.19					
	Energy to Grid	220,042.0	-0.5%					
Temperature M	letrics							
	Avg. Operating Ambient Temp		10.1 °					
Avg. Operating Cell Temp								
Simulation Met	rics							
		Operating Hours	467					
Solved Hours								


Condition Set															
Description	Cond	Condition Set 1													
Weather Dataset	TMY,	TMY, 10km grid (44.45,-93.15), NREL (prospector)													
Solar Angle Location	Mete	Meteo Lat/Lng													
Transposition Model	Pere	Perez Model													
Temperature Model	Sanc	Sandia Model													
	Rack Type					а		b			Temperature Delta				
Temperature Model Parameters	Fixed Tilt					.56		-0.07	'5		3°C				
	Flush Mount					.81		-0.0455			0°C				
Soiling (%)	J	F	М		A	Μ		J	J		A	S	0	N	D
0	2	2	2		2	2		2	2		2	2	2	2	2
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	% to 2.	.5%												
AC System Derate	0.50	%													
Module Characterizations	Module						Uploaded By		Characterization						
Module Characterizations	72M-350 (Mar18) (Heliene Inc)							Folsom Labs		Heliene_72M- 350_Mar2018.pan, PAN					
Component	Device						Uploaded E			d By	By Characterization				
Component Characterizations	P400 NA (SolarEdge)						Folsom Lal			Lab	os Mfg Spec Sheet				
	SE14	4.4KU	S (Sola	dge)			Folsom Labs			CE	CEC				

Annual Production Report produced by Del McNally

🖴 Components									
Component Name Count									
Inverters	SE14.4KUS (SolarEdge)	9 (129.6 kW)							
Strings	10 AWG (Copper)	28 (2,683.7 ft)							
Optimizers	P400 NA (SolarEdge)	461 (184.4 kW)							
Module	Heliene Inc, 72M-350 (Mar18) (350W)	461 (161.4 kW)							

🚠 Wiring Zones										
Description Combiner Poles		Combiner Poles	String Size			Stringing	Strategy			
Wiring Zone		12		9-1	17	Along Rac	king			
III Field Segments										
Description	Racking	Orientation	Tilt Azim		Intrarow Spacing	Frame Size	Frames	Modules	Power	
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	114	114	39.9 kW	
Field Segment 2	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	142	142	49.7 kW	
Field Segment 3	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	10	10	3.50 kW	
Field Segment 4	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	15	15	5.25 kW	
Field Segment 5	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	160	160	56.0 kW	
Field Segment 6	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	20	20	7.00 kW	

Oetailed Layout

Wastewater Treatment 1450 Highway 3 North Rooftop Date

5/9/2020

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Information on Total Production (kWh) **Your Solar Array Your Electric Use** 5.888.602 kWh (from solar bid) (all meters) **Total Electricity Bill Savings** \$701.490 2021 First Year of Operation Xcel Energy lectric Utility Cash Purchase Payback otal Annual Electric Use Allowance for annual expenses and financing costs excluded 161.40 Array Size (kW DC) 3,584,843 kWh) Total Annual Demand (kW) 350 Watt Rating 6.276.00 Capital Cost \$340,197 Number of Solar Modules 461 Building Area (Square Feet Grants, Rebates, No-Obligation Funds \$0 1 Roof) Number of Solar Modules Est % of Elec used betwee C 50.00% Net Cost \$340,197 LOam and 3pm Estimated annual electric Ground) Number of Solar Modules 0 2.50% Simple Project Payback 14.55 Years (Carport) scalation rate** lectric Use Intensity 129.60 Capacity (kW AC) 3,584,842.59 kWh/SF) Financed Purchase Payback Efficiency Warrantee Level UI as % of National Allowance for annual expenses excluded. Financing costs included 80.00% 35848426% verage aximum Annual Production 0.80% \$45.696.00 Annual Energy Charge (\$) Financed Capital Cost \$387.179 egradation Rate (%) 220,000 First Year Generation (kWh) \$218,936.16 Annual Demand Charge (\$) Financed Capital Payback 16.56 Years \$324,935.97 Fotal Contractor Bid Fotal Annual Electric Cost \$264,632.16 Financed Array Lifetime Payback Other Owner Expenses (legal, Effective Electric Rate 30 year allowance for annual expenses and financing costs included. \$0.00 \$0.0127 \$/kWh)* tc.) ffective Demand Charge 30 year Operational Expense Allowance \$15,260.73 Owner Contingency (if any) \$34.88 \$73,892 (\$/kW) (ins/O+M) Average Monthly Demand \$340,196.70 Total Project Budget 523.00 Financed Array Lifetime Cost \$461.071 kW) \$2.11 Total Cost Per Watt Financed Array Lifetime Payback 19.72 Years **Financial** Information \$0 Net Project Savings (30 year) Information on Array Cash / Down \$68.039.34 Total Electricity Bill Savings Per kWh \$0,1191 ayment **Your Solar Array Operation and** \$0.00 Rebates, Grants, etc. Project Cost Per Solar Per kWh \$0.0783 Maintenance \$0.00 Other no-obligation funds Net Electricity Bill Savings Per kWh \$0.0408 (from solar b nnual O+M Costs (per kW Remaining Array Cost \$272,157.36 Value to Cost Ratio \$4.20 1.52 to 1.0 Requiring Financing 2.00% O+M Annual Escalation Rate nnual Insurance Costs Loan / Bond Interest Rate 3.25% \$4.00 per kW DC) (6 year) verter Replacement Cost Loan/Bond Term \$20,417 10 Assumes year 20) assumed) Effective Electric Rate is calculated based on user entry for Annual Energy Charge and Total Annual Electric Use and may differ from utility reported rate per W/h.
 * Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/

	xgxt x ct 't8a '						5D2Yt 275	
ey bwx	yYtz wxN wzx2ftcic xvcuv	fxv				POat	x txOt tv	6A639
a xEO	tx x wxw txb wx yYtz wxt wt x x t	t x30	vx	t x ut xw		Ixt 6Sx x		77535
756B t v wv:	ttxtzx wxwu'xat texxtuxQxzXtut xtwxvttxw 7575wt3Myt x t	1 wyxw	z vtv	v				
Mv x E	5			O Uwvx	Ytxt 6365		O u xw 6365 fhN	c Qe OQa g
P Of Oeld g	juba			dt	hΜ	c xv O	gbgMX	gbgMX
MPYLAU	geMgUba Obfgf						85	5355(
	XQ\$ MX1RblOMX) MPY Lal blige Mgbil Q			5	7: 5	5 85		
	XMaP MclOh blobba			5		5 85		
	XMaPfMKQ2QkullgbalSfgehOgheQf			5		5 85		
	fbUXNbeUalSf			5	975	5 85		
1	fhei Q			5	8: 5	5 85		
Laifg/MXX	Mgloba Obfgf	jt et	z				885: 176:	CD887(
-	ciYwx2ey-Txxx8:5j.		8: 5	9A6	6C	D &CA1DAC		7C39D(
	ciYwx2SwY-Txxx8:5j.		8: 5	5	6C	D 85		5355(
	ciYwx2Ot 4ct z-Txxx8:5j.		8: 5	5	6C	D 85		5355(
	Uxx			6	6BB:	9 &6B1B: 9		: 3£7(
	b x			9A6	A	5 &7B1AA5		DBSA(
·	f v tNbf			6		5 85		5355(
	Qxv vt Nof			6	79C:	A & 791C: A		C369(
	etv z 2e y			6	7AA7	8 &7A1A78		C3B7(
	etv z 2S wY			6		5 85		5355(
	etv z 20t			6		5 85		5355(
	ft x gt			6		5 85		5355(
	Utt Xtu			6	785C			B3 A(
	f x Rx y z			5	6			5355(
	f xS tw z			5	76BC			5355(
	e yct v' 4ex t			6	D9D			8366(
	Nwzext 2aUvwxw			5		5 & &5		5355(
	TtYtex t2a Uvwxw			5		5 85		5355(
	cx = z1U xv = 1U xv xv			6	6BB:			: 307(
	NwO zx v			6	6CDC			A377(
	b x'xtw			6	7A57			C3 8(
	c y			6	7A57			C3 8(
				0				
	Ce bi QeTQMP Ma P ceb RQff Ub a MX RQQf						&6D1876	: 305(
	cebOheQYQagYMaMSQYQag2b x ex x x t x4c v x	x Yttzx	ĸ			85		
	cebOheQYQagYMaMSQYQag2Px z 4N wctv tzx					&B1A85		
	cebOheQYQagYMaSQYQag2h c xvgx Pxx t	- xv xv	1 vx 1	twtyy.		&C5B		
	QaSbalQQebalS2f v tM x x					&D19D6		
	QaSLalQQeLalS2f v tYwyvt - vwxw.					85		
	Qa S la QQe la S 20					85		
	ex u tuxQ x x					&61BD8		
							04.0044	
Obaglais							86: 17A6	939D(
	bja Qe\$fceb VQOg Obaglal SQaOl					&6: 17A6		

PROJ: Wastewater Treatment Plant LOC: 1450 Highway 3 North TITLE: Rooftop 30-Year Energy Output Calcs

su-tear therefy Output Calcs Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours 3,584.8 50%

Year 1 Generation Projection (MWH)

Vear Generation Year Use of List (MW) Reduction Perment (SRA959) Perment (SRA950) Perment (SRA950) Perment (SRA950) <th>iergy Genei</th> <th>ration Schedu</th> <th>ule (Based on I</th> <th>Predict</th> <th>ed Loss</th> <th>5)</th> <th></th> <th></th> <th>Potential R</th> <th>evenue Valu</th> <th>le</th> <th></th> <th></th> <th>Sim</th> <th>plified Cash Flow I</th> <th>Projection</th> <th></th>	iergy Genei	ration Schedu	ule (Based on I	Predict	ed Loss	5)			Potential R	evenue Valu	le			Sim	plified Cash Flow I	Projection	
ver ver lengry (Value of) Demand Demand Demand Solar Total Investment + Vear Generation Year Used (Janual) Reduction Payment Insurance Costs Annual Calu Fi 1 2021 22000 KM NM Solar Sola								Energy		Estimated							
Operation Calendar Annual Energy 1.1 % of Use (FWm) Use (F							Utility	Savings	Utility	Potential			Cash				
Vear Vear Generation Year Use (j, KWh) Jusci (j, KWh) Jusci (j, KWh) Jusci (k, KWh) Pyment					% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecaste
1 2021 222,0000 kWh 100% 6.14% 50.0127 52,804 521,8395 50.5177 (599,933) (5646) (5579) (584,953) 3 2023 216,444 kWh 98% 50.0131 52,815 522,410 515,502 (531,914) (5579) (531,914) (5579) (531,914) (5579) (513,914) (5579) (513,914) (5579) (513,914) (5579) (513,914) (5719) (513,914) (5721) (5763) (514,634) (513,914) (5721) (5763) (514,634) (512,913) (5743) (514,634) (512,913) (5743) (513,914) (5721) (5763) (514,634) (512,913) (514,634) (512,914) (5721) (5763) (514,634) (512,914) (5742) (5779) (514,634) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,916) (512,91	Operation	Calendar	Annual Energ	y	1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative 0
2 2022 218,240 kWh 99% 6.00% \$0.0131 \$2,851 \$224,410 \$13,851 \$0 \$17,056 \$(53,19,44) \$(5659) \$(5705) \$(53,19,44) \$(5659) \$(5705) \$(53,19,44) \$(5659) \$(5705) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(5658) \$(5719) \$(53,19,44) \$(568) \$(5719) \$(53,19,44) \$(568) \$(5719) \$(53,19,44) \$(568) \$(5719) \$(53,19,44) \$(568) \$(5719) \$(53,19,44) \$(568) \$(5719) \$(53,19,44) \$(53,19,44) \$(568) \$(5712) \$(53,19,44) \$(53,19	Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
3 2023 216,494 WM 98% 6.004% \$0.0137 \$22,0020 \$1,191.61 (6772) (7075) (515.195) 5 2025 213,044 WM 97% \$94% \$50.0137 \$22,446 \$23,7705 \$15,152 \$51.516.195) \$51.319.141 (568) (5774) (515.433) 6 2026 213,044 WM 97% \$94% \$50.0144 \$3.048 \$27,705 (515.195) \$13.321 (513.414) (5772) (5773) (513.434) 7 2027 205,649 WM 95% \$50.0144 \$3.099 \$233.898 \$15.617 50 \$13.770 (513.191.41) (5772) (5783) (513.391.41) (5772) (531.314) (5772) (531.314) (5777) (531.301.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.391.61) (513.61) (513.61) (513.61) (513.61)	1	2021	220,000	kWh	100%	6.14%	\$0.0127	\$2,804	\$218,936	\$13,513	\$0	\$16,317		(\$646)	(\$678)		(\$84,959
4 2024 214/702 WM 98% 599% \$0.0131 \$2.248 \$2.235,770 \$1.4525 \$0.0 \$17,500 \$531,914) \$(5685) \$(5719) \$(515,818) 6 2026 211,340 WM 96% \$90% \$0.0141 \$2.298 \$241,605 \$17,913 \$(5748) \$(515,039) 7 2027 209/64 WM 95% \$80% \$0.0125 \$3.121 \$260,246 \$15,618 \$0 \$15,214 \$(512,141) \$(5742) \$(5779) \$(514,220) 9 2028 207,692 WM 95% \$80% \$0.0155 \$3.214 \$515,214 \$512,214 \$(512,914) \$(5777) \$(514,220) 10 2032 204,638 WM 93% \$57,75% \$0.0155 \$3.216 \$217,923 \$20,146 \$(512,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(513,914) \$(5777) \$(516,915) \$(516,915) \$(516,915) \$(516,915) \$(516,915)														(\$659)			(\$101,52
5 2025 213,044 WM 97% 5,94% \$0,0144 \$3,048 \$247,065 \$15,289 \$0 \$13,131 (57,94) (51,54,33) 6 2026 211,340 WM 95% \$500,50 \$13,870 \$13,191,41 (57,27) (57,63) (51,43) 8 2028 207,72 WM 95% \$500,50 \$15,226 \$15,633 \$0 \$15,214 (57,27) (57,63) (51,43) 9 2029 206,308 WM 94% \$7,76% \$0.0159 \$3,226 \$27,212 \$15,676 \$20,114 (57,77) (58,12,97) (51,32,97) 10 2030 204,668 WM 94% \$5,776% \$0.0159 \$3,218 \$21,780 \$0 \$21,600 \$0 (57,77) (58,26) \$15,220 11 2031 203,020 WM 92% \$6,66% \$0.0167 \$3,318 \$207,288 \$0 \$21,600 \$0 (57,77) (58,26) \$15,220 12 2032 213,910 10% \$20,808 \$21,718 \$21,780 \$0 (580,31 \$16,907 \$15,329																	(\$117,71
6 2026 211340 kvh 96% 5.90% 5.00144 53.048 5247,706 511,293 (531,914) (5713) (5748) (515,09) 9 2029 206,649 kvh 95% 5.55% 500,112 53,151 526,024 516,063 50 513,214 (531,914) (5722) (576) (514,634) 9 2029 206,688 kvh 95% 5.55% 500,115 53,258 527,3421 518,646 501,519,140 (5772) (581,914) (575,6) (5744) (51,3976) 11 2031 200,200 kvh 92% 5.66% 500,1167 53,368 526,726 51,628 520,104 50 (531,924) (5772) (581,927) 12 2032 20,389 kvh 92% 5.66% 50,0163 53,628 521,046 51,629 521,049 50 (530,015) 53,771 50,0163 53,661 531,029 520,348 520,156 524,446 50 (5823) (5823) (5823) 522,1300																	(\$133,53
7 2027 2096,69 kvn 95% 5.85% 50.0148 53,099 523,899 515,671 50 518,770 (531,914) (5727) (5763) (514,620) 9 2029 206,308 kvh 94% 5.76% 50.0155 53,204 526,672 516,644 50 519,676 (531,914) (5727) (543,914) (5727) (5026) (501,914) (512,914)																	(\$148,96 (\$164,00
s 2028 207,972 kWn 955 540,00 531,511 556,0732 516,063 50 519,214 (531,914) (572) (574) (513,76) 10 2030 204,658 kWn 94% 57,718 \$0,0159 \$3,248 \$273,421 \$16,876 \$0 \$20,144 (531,914) (5772) (5816) 11 2031 203,020 kWn 92% 5,66% \$0,0163 \$3,131 \$20,057 \$17,730 \$21,099 \$0 (5803) (5843) \$19,451 12 2032 201,396 kWn 92% 5,62% \$0,0167 \$3,483 \$301,806 \$17,730 \$21,099 \$0 (5833) (5843) \$19,920 14 2034 198,187 kWn 99% 5,44% \$0,0185 \$3,610 \$31,708 \$21,710 \$0 (5869) (512) \$21,931 15 2036 195,028 kWn 8% \$3,610 \$31,7085 \$21,571 \$23,171																	(\$164,00
9 2029 2065,308 kWin 94% 5.7.6% 50,0155 \$3,204 \$266,752 \$51,6464 \$50 \$519,668 \$519,668 \$519,668 \$519,668 \$519,668 \$511,514 \$5772 \$510 \$513,362 \$527,372 \$510,772 \$510 \$513,362 \$527,763 \$511,730 \$521,009 \$50 \$5833 \$548,93 \$519,658 \$511,733 \$523,572 \$511,733 \$51,573 \$521,009 \$50 \$5333 \$527,572 \$511,733 \$519,653 \$52,654 \$50 \$535,61 \$533,137 \$520,666 \$533,217 \$50 \$5869 \$522,431 \$509,65 \$522,431 \$509,653 \$522,431 \$509,653 \$522,431 \$50 \$594,418 \$50,522,139,55																	(\$192,86
10 2030 204 (68 kWh 93% 5.71% 50.0159 \$273,421 \$16,876 \$0 \$20,141 \$(\$31,914) \$(\$772) \$(\$101) \$(\$13,362) 11 2032 201,306 kWh 92% 5.62% \$0.0167 \$33,38 \$220,257 \$17,730 \$21,099 \$0 \$(\$803) \$(\$443) \$19,453 13 2033 199,755 kWh 92% 5.62% \$0.0176 \$3,488 \$301,906 \$21,598 \$0 \$(\$819) \$(\$850) \$(\$843) \$19,453 15 2035 196,601 kWh 89% 5.44% \$0.0186 \$35,611 \$370,903 \$22,634 \$0 \$(\$852) \$(\$886) \$(\$911) \$21,390 16 2036 199,202 kWh 89% 5.44% \$0.0186 \$32,601 \$370,705 \$23,111 \$0 \$(\$860) \$(\$911) \$21,390 17 2037 193,468 kWh 89% 5.44% \$0.0186 \$32,601 \$370,705 \$23,211 \$0 \$(\$860) \$(\$912) \$21,430 \$24,431 \$23,721 \$23,172 \$23,172 \$23,243 \$33,137 \$23,841 \$32,2431 \$32,2431																	(\$206,65
11 2031 203.020 k/wh 92% 56.6% 50.0163 \$31.31 \$280.57 \$17.298 \$0 \$20.610 \$0 \$7777 \$\$2256 \$\$18.997 12 2032 201.396 k/wh 92% \$50 \$20.099 \$0 \$\$800 \$\$19.920 13 2033 199.785 k/wh 91% \$57.7% \$50.017 \$34.82 \$287.63 \$17.73 \$21.598 \$0 \$\$19.01 \$50 \$\$800 \$\$19.420 14 2034 198,187 k/wh 90% \$54.83 \$301.806 \$18.628 \$22.110 \$0 \$\$835 \$\$60.01 \$\$77.7 \$20.398 \$50.0180 \$317.085 \$19.571 \$22.171 \$0 \$\$860 \$\$931 \$21.994 18 2038 19.920 k/h 877.55 \$30.002 \$21.076 \$24.861 \$0 \$\$922.1 \$\$90 \$\$904 \$\$22.431 19 2039 199.385 k/h 850.022 \$22.441 \$25.451 \$50 \$\$90 \$\$994 \$22.4290 \$\$90 \$\$914.14 \$27.575<																	(\$220,01
12 2032 201,396 kvh 92% 56.2% 50.0167 53,348 527,730 521,099 50 (\$603) (\$443) 519,453 13 2033 199,785 kvh 91% 55.7% 50.0176 53,448 531,737 521,598 50 (\$819) (\$860) (\$19,72) 50.038 \$21,598 50 (\$813) (\$877) \$20,398 16 2036 195,601 kvh 89% 5,444 \$337,012 \$20,606 \$23,711 \$0 (\$869) (\$911) \$21,390 17 2037 139,468 kvh 89% 5,444 \$337,012 \$20,660 \$23,721 \$20,814 \$24,241 \$20,888 \$22,431 \$21,994 \$22,431 \$21,994 \$22,431 \$21,994 \$22,431 \$20,244 \$20 \$5041 \$52,24,243 \$20 \$20,494 \$24,411 \$21,598 \$22,431 \$21,598 \$22,431 \$21,598 \$22,431 \$21,598 \$22,431 \$21,598 \$22,431 \$21,598 \$22,431 \$21,598 \$22,431 \$21,598 \$22,431 \$24,415																	(\$201,02
14 2034 198,187 kvh 90% 5.33% \$50,176 \$23,883 \$301,806 \$52,110 \$50 \$5351 \$52,0393 15 2035 196,01 kvh 89% \$50,808 \$33,41 \$309,351 \$13,0933 \$22,634 \$50 \$5523 \$5894 \$20,238 16 2036 195,028 kvh 89% \$50,018 \$33,7012 \$20,060 \$32,711 \$50 \$5869 \$5121 \$21,390 17 2037 193,468 kvh 87% \$50,019 \$37,813 \$333,137 \$20,562 \$24,244 \$50 \$5949 \$522,431 19 2039 199,335 kvh 87% \$53,145 \$530,026 \$24,861 \$50 \$5921 \$52,636 \$22,690 \$25,675 \$50 \$5991 \$51,007 \$24,689 \$24,609 \$24,619 \$22,696 \$26,675 \$50 \$5999 \$51,007 \$24,689 \$22,696 \$26,675 \$50 \$5999 \$51,027 \$20,468 \$22,696 \$26,675 \$50 \$5999 \$51,027 \$22,468 \$22,624	12	2032		kWh		5.62%	\$0.0167			\$17,730			\$0			\$19,453	(\$181,56
15 2035 196,601 kvh 89% 50.0180 \$34,74 \$309,351 \$10,093 \$22,634 \$0 \$(\$52) \$(\$894) \$20,088 16 2036 195,028 kvh 89% \$0.0180 \$317,085 \$19,571 \$23,171 \$0 \$(\$866) \$(\$313) \$21,904 17 2037 193,488 kvh 87% \$0.0189 \$32,611 \$237,015 \$23,711 \$0 \$(\$866) \$(\$313) \$21,904 18 2038 191,920 kvh 87% \$50.019 \$37,85 \$341,46 \$21,076 \$24,861 \$0 \$(\$522) \$(\$666) \$22,2970 20 2040 188,862 kvh 86% \$0.0209 \$3,849 \$350,002 \$21,602 \$25,451 \$0 \$(\$941) \$(\$21,405) \$3,406 \$376,721 \$22,696 \$26,675 \$0 \$(\$999) \$(\$1,007) \$24,689 \$22,441 \$26,675 \$0 \$(\$999) \$(\$1,007) \$25,284 \$24,410 \$26,675 \$0 \$(\$999) \$(\$1,002) \$(\$1,002) \$(\$1,002) \$(\$1,002)																	(\$161,64
16 2036 195,028 kWh 89% 54.4% S0.0185 \$317,065 \$19,71 \$22,171 \$50 \$5869) \$512,1 \$21,300 17 2037 193,468 kWh 87% \$50,018 \$336,012 \$20,060 \$23,721 \$50 \$5869) \$521,1 \$21,900 18 2038 191,920 kWh 87% \$53,3% \$50,0194 \$37,213 \$331,107 \$20,562 \$24,284 \$50 \$590,01 \$542,431 \$50 \$522,470 \$536,52 \$22,470 \$536,52 \$524,510 \$531,06 \$524,510 \$531,06 \$522,570 \$50 \$5399) \$53,100 \$54,469 \$524,510 \$532,010 \$542,670 \$50 \$5399) \$51,027 \$52,468 \$52,695 \$50 \$599) \$51,027 \$52,468 \$52,695 \$50 \$599,91 \$51,027 \$52,583 \$54,169 \$52,695 \$50 \$599,91 \$51,027 \$52,684 \$52,695 \$50,031 \$53,835,596 \$52,657 \$50 \$599,91 \$51,028 \$51,028 \$52,683 \$50,625,675 \$50 \$599,91																	(\$141,25
17 2037 133,468 kWh 88% 5,40% \$00,0189 \$326,61 \$327,01 \$50 \$586,61 \$532,11.904 18 2038 191,920 kWh 87% \$533,137 \$20,562 \$24,284 \$50 \$590,1 \$524,271 \$50 \$586,1 \$522,970 2039 190,385 kWh 87% \$533,45 \$534,016 \$21,076 \$24,881 \$50 \$592,22 \$(586) \$522,2970 20 2040 188,862 kWh 87% \$530,002 \$21,062 \$25,451 \$50 \$(5939) \$(5988) \$24,410 22 2042 187,551 kWh 85% \$00,014 \$3,979 \$367,721 \$22,665 \$50 \$(5979) \$(51,007) \$24,689 23 2043 184,825 kWh 853 \$00,214 \$23,663 \$27,399 \$0 \$(5989) \$(51,007) \$24,849 24 2044 184,280 kWh 83% \$00,231 \$4,414 \$22,625 \$20,1018 \$(51,008) \$(51,008) \$(51,008) \$(51,008)																	(\$120,36
18 2038 191,20 kvh 87% 50.0194 \$37,35 \$331,37 \$20,562 \$24,284 \$50 \$(\$904) \$52,2431 19 2039 190,385 kvh 87% \$50,0194 \$37,85 \$331,366 \$21,070 \$54,861 \$50 \$(\$522) \$(\$568) \$522,570 \$20,024 \$38,849 \$350,002 \$23,841 \$50 \$(\$521) \$(\$522) \$(\$589) \$(\$522) \$(\$589) \$(\$589) \$(\$589) \$(\$589) \$(\$589) \$(\$589) \$(\$589) \$(\$522) \$(\$589) \$(\$51,007) \$24,689 23 2043 184,365 kvh<84%													\$0				(\$98,973
19 2039 190,385 kWh 87% 5,31% 50,0199 52,785 5341,66 521,076 524,861 S0 (522,2) (5966) 522,270 20 2040 188,862 kWh 86% 52,7% 50,020 53,160 523,451 50 (5941) (524,455) 53,166 21 2042 187,351 kWh 86% 52,7% 50,020 53,31,66 522,142 526,655 50 (5979) (51,007) 524,861 22 2043 184,855 kWh 84% 51,4% 50,0219 54,414 523,656 527,399 50 (51,018) (51,028) (51,028) (51,028) (51,028) (51,028) (51,028) (51,028) (52,52,52,244) (52,675 50 (51,018) (51,028)													50				(\$77,068
20 2040 188,862 kvh 86 527,81 50 (\$341) (\$21,405) \$33,10 21 2041 187,351 kvh 85% 50.0204 \$38,8752 \$22,1602 \$25,451 \$50 (\$343) \$52,405 22 2042 187,351 kvh 85% \$50,0214 \$33,8772 \$22,442 \$56,056 \$50 (\$599) (\$1,007) \$24,689 23 2043 184,365 kvh 84% \$0.0219 \$40,46 \$389,596 \$22,645 \$27,999 \$0 (\$1,018) (\$1,048) \$25,5893 25 2045 181,427 kvh 82% \$0.0245 \$43,35 \$41,603 \$25,679 \$30,003 \$0 (\$1,038) (\$1,048) \$27,156 27 2047 178,536 kvh 81% \$0,024 \$43,25 \$44,71 \$24,767 \$30,003 \$0 (\$1,020) \$1,124) \$24,841 \$25,622 \$30,718 \$0 \$1,102) \$1,134) \$28,																	(\$54,638 (\$31,667
21 2041 187,351 kWh 855 50,0209 \$338,752 \$22,142 \$26,056 \$50 \$(\$959) \$(\$988) \$24,4109 22 2042 188,852 kWh 84% \$0,0209 \$39,712 \$22,696 \$26,675 \$50 \$(\$979) \$(\$1,007) \$24,689 23 2043 188,852 kWh 84% \$0,0219 \$4,404 \$23,636 \$27,399 \$50 \$(\$598) \$(\$1,027) \$25,284 24 2044 182,890 kWh 83% \$0,0219 \$4,404 \$23,653 \$27,399 \$50 \$(\$5,108) \$(\$1,028) \$25,528 25 2045 181,427 kWh 82% \$0,0236 \$42,533 \$246,525 \$23,035 \$50 \$(\$1,018) \$(\$1,028) \$(\$1,028) \$(\$1,028) \$(\$1,028) \$(\$1,029) \$27,156 26 2046 179,976 kWh 81% \$49,99% \$0,0245 \$42,532 \$30,030 \$(\$1,020) \$(\$1,121) \$27,811 27 2047 176,38 \$4,939 \$42,644 \$25,678 \$													so				(\$28,561
22 2042 185,852 kv/h 84% 51.8% 50.0214 \$33,79 \$367,211 \$22,696 \$26,675 \$0 \$(\$579) \$(\$1,007) \$24,689 23 2043 183,655 kv/h 843,65 kv/h 83% \$0,0214 \$33,799 \$37,791 \$23,865 \$27,399 \$0 \$(\$599) \$(\$1,028) \$25,583 24 2044 182,890 kv/h 83% \$51,059 \$23,845 \$27,999 \$0 \$(\$1,038) \$(\$1,048) \$25,583 25 2046 179,976 kv/h 82% \$0,025 \$41,813 \$398,996 \$24,441 \$22,652 \$29,305 \$0 \$(\$1,009) \$27,156 27 2047 179,56 kv/h 81% 4.94% \$0,024 \$43,25 \$44,71 \$26,526 \$30,718 \$0 \$1,102) \$1,134) \$28,481 29 2049 175,691 \$44,710 \$45,465 \$448,033 \$27,653 \$32,199 \$0 \$1,124)													so				(\$4,452)
23 2043 184,865 kWh 84% 51.0% 50.0219 \$4,046 \$376,914 \$23,633 \$27,999 \$0 \$5989 \$(1,1027) \$25,284 24 2044 182,890 KWh 84% \$50.0259 \$41,146 \$336,337 \$23,845 \$27,999 \$0 \$(51,018) \$(51,048) \$25,528 25 2045 181,427 KWh 82% \$0.0231 \$4,183 \$396,996 \$24,441 \$22,652 \$50 \$(51,059) \$(51,059) \$(51,059) \$(51,059) \$(51,059) \$(51,059) \$(27,156) 26 2046 179,976 KWh 81% 4.98% \$0.0242 \$43,25 \$416,043 \$25,579 \$30,033 \$0 \$(51,09) \$(51,112) \$27,811 28 2048 177,108 KWh 81% 4.94% \$0.0245 \$43,473 \$25,578 \$31,450 \$0 \$(51,122) \$(51,124) \$(51,125) \$29,169 \$30 \$20 \$31,450 \$0 \$(51,124) \$(51,125) \$29,169 \$32,146 \$32,1450 \$32,149 \$0 \$(51,124)																	\$20,237
25 2045 181,427 kVh 828 50.0231 \$24,441 \$28,624 \$0 (\$1,038) (\$1,069) \$26,6517 26 2046 179,976 kVh 82% \$00,231 \$47,83 \$496,585 \$25,052 \$29,305 \$0 \$1,059) (\$1,069) \$27,156 27 2047 178,536 kVh 81% 4.98% \$00,242 \$43,25 \$416,644 \$25,679 \$30,003 \$0 (\$1,029) (\$1,112) \$27,781 28 2048 177,108 KVh 81% 4.98% \$00,254 \$44,71 \$437,105 \$25,678 \$31,450 \$0 (\$1,124) (\$1,157) \$29,169 30 2050 174,285 kWh 79% 4.86% \$00,215 \$4,546 \$448,033 \$27,653 \$32,19 \$0 \$1,146) \$51,122) \$52,878 30 2050 174,285 kWh 79% 4.86% \$00,215 \$4,546 \$448,033 \$27,653 \$32,19 \$0 \$51,146) \$51,122) \$52,878 31,160 0252 83,454		2043		kWh	84%	5.14%	\$0.0219	\$4,046	\$376,914	\$23,263		\$27,309	\$0			\$25,284	\$45,521
26 2046 179,976 kWh 82% 50,0236 \$42,53 \$405,895 \$25,052 \$29,305 \$50 \$(\$1,099) \$27,156 27 2047 178,536 kWh 81% 4.94% \$0,0246 \$44,253 \$416,043 \$25,679 \$30,003 \$50 \$(\$1,029) \$(\$1,124) \$27,156 28 2048 177,168 kWh 81% 4.94% \$0,0248 \$43,7105 \$26,579 \$30,718 \$50 \$(\$1,122) \$(\$1,134) \$28,481 29 2049 175,691 kWh 81% 4.94% \$0,0246 \$44,71 \$52,6578 \$31,450 \$50 \$51,122) \$51,124) \$51,809) \$29,873 Assumed Percentage of Demand Charge Reduction*: 6.17% \$32,7653 \$32,199 \$50 \$51,146) \$51,180) \$29,873 * Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage demand, multiplied by 30%,reflecting an assumption that 1/374 of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.mrel.gov/docs/fy17osti/69016.pdf		2044	182,890	kWh	83%	5.10%	\$0.0225	\$4,114	\$386,337	\$23,845		\$27,959		(\$1,018)	(\$1,048)		\$71,414
27 2047 178,536 kWh 81% 4.98% 50.0242 \$43,25 \$546,644 \$256,579 \$30,003 \$50 (\$1,102) \$27,811 28 2048 177,108 kWh 81% 4.98% \$00,242 \$43,25 \$426,644 \$256,579 \$30,718 \$50 (\$1,102) \$27,811 29 2049 177,608 kWh 80% \$0.0254 \$4,471 \$437,105 \$25,678 \$31,450 \$50 (\$1,124) (\$1,157) \$29,169 30 2050 174,285 kWh 79% 4.86% \$0.0261 \$4,546 \$448,033 \$27,653 \$32,199 \$0 (\$1,124) (\$1,157) \$29,873 Assumed Percentage of Demand Charge Reduction*: 6.17% Total Installed Array Cost (incl. contingency, other value is based on nossible demand service direct from solar array. The value is based on nossible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity is percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity one to demand peak. For more information see NREL report: https://www.mrel.gov/docs/h/17/stif69016,													\$0				\$97,930
28 2048 177,108 kWh 81% 4.94% 50.0248 542,644 56.320 530,718 50 (51,122) (51,134) 528,481 29 2050 176,601 kWh 81% 60.0248 544,71 552,678 531,450 50 (51,124) (51,127) (51,124) 528,481 30 2050 174,285 kWh 79% 4.86% 50.0261 54,546 5448,033 527,653 532,199 50 (51,124) (51,157) 529,169 Assumed Percentage of Demand Charge Reduction*: 6.17% COSTS AND FINANCING * Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on possible demand service direct from solar array. The value is based on possible demand peak. For more information see NREL report: https://www.mrel.gov/docs/fy17.0sti/69016.pdf 546,1 Total Interset Payments 546,2 0perational Expense Allowance (insurance, 0+M, 30- grant) 573, year) 70 733, year) Total Lifetime Project Costs Advance Meteorement of total base forware 10 years tate																	\$125,086
29 2049 175,601 kWh 80% 4.90% \$0.0254 \$44,71 \$437,005 \$25,678 \$31,450 \$0 (\$1,124) (\$1,124) (\$1,157) \$29,169 30 2050 174,285 kWh 79% 4.86% \$0.0261 \$44,546 \$448,033 \$27,653 \$31,450 \$0 (\$1,124) (\$1,126) \$29,873 Assumed Percentage of Demand Charge Reduction*: 6.17% COSTS AND FINANCING Total Installed Array Cost (incl. contingency, other owner expenses) \$34,00 \$34,00 \$340													\$0				\$152,897
30 2050 174,285 kwh 79% 4.86% \$0.0261 \$4,546 \$448,033 \$27,653 \$32,199 \$0 \$\$1,146j \$\$1,180j \$29,873 Assumed Percentage of Demand Charge Reduction*: 6.17% COSTS AND FINANCING * Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assume potential reduction on see NREL report: https://www.nrel.gov/docs/fV17osti/69016.pdf 5461, 70tal Interest Payments 5461, 70tal Interest Payments * Estilation ater economedide to be based on le Abata Browser 10 year State													\$0				\$181,378
Assume Percentage of Definition Charge Reduction*: 6.17% Total Installed Array Cost (incl. contingency, other <u>owner expenses</u>) * Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3/d of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.mrel.gov/docs/ft/17osti/69016.pdf ** Escalation rate recommended to be based on ELA Data Browser 10 year State																	\$210,54 \$240,420
Charge Reduction*: 6.17% Total Installed Array Cost (incl. contingency, other owner expenses) 5340, owner expenses) * Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/37 of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nrel.gov/docs/fy17osti/69016.pdf Operational Expense Allowance (insurance, 0+M, 30- year) 5733, year) ** Esclation rate recommended to be based on ELA Data Browser 10 year State Total Lifetime Project Costs 5461,0		Assumed	Percentage of D	emand									COSTS AND F	INANCING			
* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The Total Interest Payments \$46,4 value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nrel.gov/docs/fy17osti/60016.pdf Total Browser 10 year State					6.17%										contingency, other	\$340,197	
demand charge based on possible demand service direct from solar array. The Total Interest Payments \$46,1 value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/37 of the operating months will have solar capacity to meet demand peak. For more information see NREL report: Operational Expense Allowance (insurance, 0+M, 30- year) \$73,1 https://www.nrel.gov/docs/fy17osti/69016.pdf Total Lifetime Project Costs \$461,0 ** Escalation rate recommended to be based on ELA Data Browser 10 year State \$461,0		* Estimated De	emand Charge Re	duction	assume	s potenti	al reduction of	total							Funds	\$0	
multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Ecalation rate recommended to be based on EIA Data Browser 10 year State		demand charge	e based on possil	ble dem	and serv	ice direct	from solar arr	ay. The								\$46,982	
nave solar capacity to meet demand peak. For more information see NREL report:		multiplied by 3	80% reflecting an	assump	tion tha	t 1/3rd of	f the operating	months will						ense Allowance	(insurance, O+M, 30	\$73,892	
** Escalation rate recommended to be based on EIA Data Browser 10 year State							ormation see N	IREL report:						roject Costs		\$461,071	
history: https://www.eia.gov/electricity/data/browser/ SAVINGS		** Escalation r	ate recommende	d to be	based o	n EIA Dat	a Browser 10 y	ear State					SAVINGS				

** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: All information provided is intended as a good-faith order of magnitude estimation of costs and benefit values. impacts of potential Investment Tax Incentive or depreciation benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

Total Lifetime Project Savings

Net Lifetime Project Costs or Savings		\$240,420	
Total Project Cost Payback (Years)		19.7	Years
Value to Cost Ratio		1.52	to 1.0
Electricity Production (kWh, 30-year)		5,888,602	kWh
Percent of Electricity Usage Covered by Solar	(Year	6.14%	

\$701,490

220.0

Site Solar Feasibility Reports by Building

Water Department Office

Concept Design

The roof configuration of the Water Department Office building is moderately suited for solar PV installation, with good orientation, configuration, and limited rooftop equipment. However the building has moderately significant solar obstructions due to mature trees immediately adjacent to the building.

The concept explored in this option is a rooftop solar array meeting the program requirements for the Xcel Energy Solar Rewards program. The Solar Rewards program incentivizes solar installations, first by attributing all energy generated by the solar array to the building's energy consumption on a one-to-one basis (as would occur in a traditional Net Metering interconnection). Secondly, the Solar Rewards program pays the site owner an additional \$0.06 per kWh generated for the first 10 years of operation. Under this arrangement, the site owner receives essentially double compensation for electricity generated by the array for the first 10 years. In exchange, Xcel Energy is allowed to retain the Renewable Energy Credits (the "green attributes") for all power generated by the solar array for the 10 year period. Following the 10 year period the array reverts back to a net metered site (with energy generation offsetting energy consumed on a one-to-one basis)

The array is not capable of offsetting all of the electricity used on site. The array's first year generation is estimated to offset approximately 9% of the site's current reported electricity consumption. The site utilization and tree coverage does not readily support ground mounted arrays while carport arrays would not be cost effective for this site and its energy tariff structure. Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance

The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.54:1 ratio. As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.02 more than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

COSTS AND FINANCING

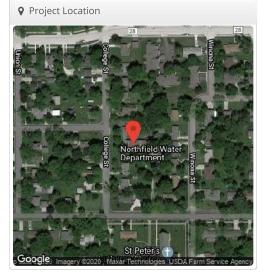
Total Installed Array Cost (incl. contingency, other owner expenses)	\$45,012
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$6,216
Operational Expense Allowance (insurance, O+M, 30- year)	\$7,880
Total Lifetime Project Costs	\$59,108

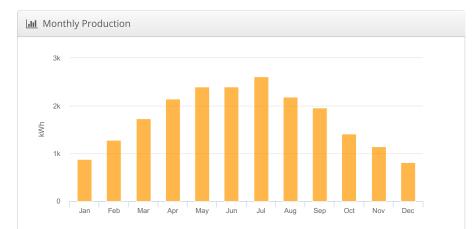
Total Lifetime Project Savings	\$91.035

OUTCOMES

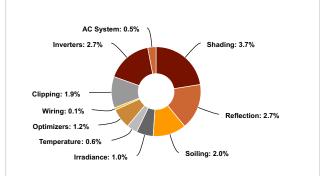
Net Lifetime Project Costs or Savings	\$31,927						
Total Project Cost Payback (Years) 19.5							
Value to Cost Ratio	1.54	to 1.0					
Electricity Production (kWh, 30-year)	561,559	kWh					
Percent of Electricity Usage Covered by Solar (Year	9.32%	0					

Note, values do not include social cost of carbon avoided by the solar array.





Rooftop City of Northfield Water Department Office, 1101 College St, Northfield, MN

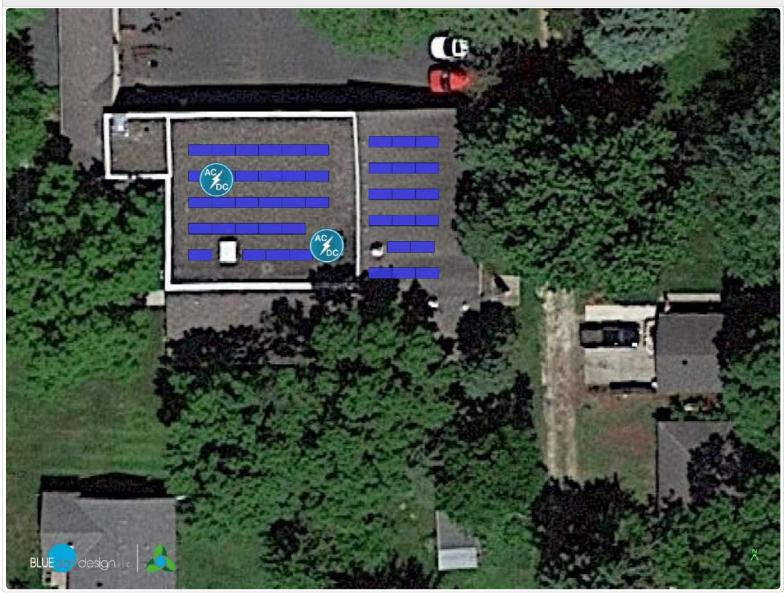

🖋 Report	
Project Name	City of Northfield Water Department Office
Project Address	1101 College St, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lul System Metrics								
Design	Rooftop							
Module DC Nameplate	15.4 kW							
Inverter AC Nameplate	12.0 kW Load Ratio: 1.28							
Annual Production	20.98 MWh							
Performance Ratio	84.4%							
kWh/kWp	1,362.6							
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)							
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751							

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,613.7	15.79
Irradiance	Shaded Irradiance	1,553.5	-3.79
(kWh/m²)	Irradiance after Reflection	1,510.8	-2.79
	Irradiance after Soiling	1,480.6	-2.09
	Total Collector Irradiance	1,480.3	0.09
	Nameplate	22,775.9	
	Output at Irradiance Levels	22,545.9	-1.09
	Output at Cell Temperature Derate	22,401.5	-0.6
F	Output After Mismatch	22,401.5	0.09
Energy (kWh)	Optimizer Output	22,131.9	-1.29
nergy ‹Wh)	Optimal DC Output	22,101.3	-0.1
	Constrained DC Output	21,685.5	-1.9
	Inverter Output	21,089.3	-2.79
	Energy to Grid	20,983.8	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		10.1 °
	Avg. Operating Cell Temp		16.9 °
Simulation Metr	ics		
	0	perating Hours	467
		Solved Hours	467

Condition Set														
Description	Cond	Condition Set 1												
Weather Dataset	TMY,	MY, 10km grid (44.45,-93.15), NREL (prospector)												
Solar Angle Location	Mete	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sanc	lia Mc	del											
	Rack	к Туре		ē	a		b		Т	emper	ature [elta		
Temperature Model Parameters	Fixe	d Tilt		-	3.56		-0.07	75	3	°C				
	Flus	h Moι	unt	-	2.81		-0.04	455	0	°C				
Soiling (%)	J	F	М	А	Ν	1	J	J	Α	S	0	N	D	
	2	2	2	2	2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%													
Cell Temperature Spread	4° C													
Module Binning Range	-2.5%	6 to 2.	5%											
AC System Derate	0.50	%												
Module Characterizations	Mod				Uploaded By		Characterization							
module characterizations	72M-350 (Mar18) (Heliene Inc)						olsom abs		Heliene_72M- 350_Mar2018.pan, PAN					
Component	Devi	ce					Uploaded By			Cha	Characterization			
Component Characterizations	P40) NA (SolarE	dge)			Folsom Labs			Mfg	g Spec	Sheet		
	SE6	< (Sola	arEdge)				Folso	m La	bs	Spe	ec Shee	et		


© 2020 Folsom Labs

🖨 Components							
Component	Name	Count					
Inverters	SE6K (SolarEdge)	2 (12.0 kW)					
Strings	10 AWG (Copper)	2 (71.5 ft)					
Optimizers	P400 NA (SolarEdge)	44 (17.6 kW)					
Module	Heliene Inc, 72M-350 (Mar18) (350W)	44 (15.4 kW)					

🛔 Wiring Zor	nes								
Description		Combiner Poles		Str	ing Size	Stringing	Strategy		
Wiring Zone 12			16	-35	Along Rac	king			
C.									
Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	27	27	9.45 kV
Field Segment 2	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	17	17	5.95 kV

Oetailed Layout

Date 5/9/2020

Water Department 1101 College St Rooftop

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	561,559	kWh
	_		_	Total Electricity Bill Savings	\$91,035	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
15.40	Array Size (kW DC)	225,011	Total Annual Electric Use (kWh)	Allowance for annual expenses and financin	g costs excluded	
350	Watt Rating	1,080.00	Total Annual Demand (kW)	Capital Cost	\$45,012	
44	Number of Solar Modules (Roof)	7,500	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
0	Number of Solar Modules (Ground)	50.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$45,012	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	14.83	Years
64.00	Capacity (kW AC)	30.00	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	300%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$17,192.71	Annual Energy Charge (\$)	Financed Capital Cost	\$51,228	
20,980	First Year Generation (kWh)	\$11,328.00	Annual Demand Charge (\$)	Financed Capital Payback	16.88	Years
\$42,983.52	Total Contractor Bid	\$28,520.71	Total Annual Electric Cost	Financed Array Lifetime Payback	:	
\$0.00	Other Owner Expenses (legal, etc.)	\$0.0764	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and t	financing costs included.	
\$2,028.52	Owner Contingency (if any)	\$10.49	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$7,880	
\$45,012.03	Total Project Budget	90.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$59,108	
\$2.92	Total Cost Per Watt	Financial		Financed Array Lifetime Payback	19.48	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$9,002.41	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1621	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.1053	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0569	
\$4.20	Annual O+M Costs (per kW DC)	\$36,009.63	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.54	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$2,777	Inverter Replacement Cost (Assumes year 20)	10	Loan/Bond Term			
		reported rate per kWh.	ed based on user entry for Annual ectric Use and may differ from utility o be based on EIA Data Browser 10			

jtxPxt x 66560 xzxf e y							5D2Yt 275	
bwxyYtz wxNwzx2ftcic xvcuv	fxv					POat >	txOttv	6: 39
a xEO tx x wxw txb wx yYtz wxt wtx x t 756B t tt xtzx wxwu 'xat tex x tu xQ x z Xtu t v wvx t wx vtt xw 7575 w t 3M y t x t	t x3O 1 wyxw z	vxt: vtv	v v			lxt 6Sx x t		7635
Mv x E 5		o	Uwvx	Ytxt 6365			uxw 165 fhN	cQeOQa q
P QF Oeldt glib a			dt	h	м	c xv O	gb gMX	gb gMX
MPY Laluf geMgLoba Obfgf							85	5355(
XQ\$ MX1Rb/OMX) MPY Laib/ge/MgbiiQ			5		7: 55	85		
XWaP MclOh blob blob			5		5	85		
XWaPfMXQ2Qkb/gbaSfgehOgheQf			5		5	85		
fb UX Nbelai Sf			5		9755	85		
fhei Q			5		8: 55	85		
LaifgMXXMgUba Obfgf	jtetz						8951 B5	D5368(
ciYwx2ey-Txxx8:5j.		8: 5	99		7C5	867188D		85396(
ci Y w x 2S wY -Tx x x 8: 5j .		3:5	5		7C5	85		5355(
ci Y w x 20t 4 ct z -Tx x x 8:5j.		3:5	5		7C5	85		5355(
U x x			6		796:	&7196:		: D. (
b x			99		A5	871495		A3 6(
f v t Nbf			6		5	85		5355(
Qxv vt Nbf			6		878B	&8178B		BBC(
etv z 2e v			6		87A7	&817A7		C359(
etv z 2S wY			6		5	85		5355(
etv z 20t			6		5	85		5355(
ft x qt			6		5	85		5355(
Utt Xtu			6		8A9:	&81A9:		C3DC(
f x Rx v z			5		6:	85		5355(
f xS tw z			5		76BC5	85		5355(
			5		D5A	&D5A		
e yct v'4ex t			5					7378(
Nwzext 2aUvwxw TtYtext2aUvwxw			5		5 5	85 85		5355(
								5355(
cx z1U xv 1U x v xv			6		6AD9	861AD9		936C(
NwO zx v			6		7999	&71999		A357(
b x'xtw			6		8DD9	&81DD9		D3C: (
су			6		8DD9	&8 1DD9		D 3C : (
PQiQKbcQebiQeTQMPMaPcebRQffUbaMXRQQf							871968	: 3BA(
cebOheQYQagYMaMSQYQag2b x exxxt x4c v x	x Yttzx x					85		
cebOheQYQagYMaMSQYQag2Pxz4N wctvtzx						861569		
cebOheQYQagYMaSQYQag2h c xvgx Pxx t	- xv xv 1	vx 1t	wtyy.			&7B9		
QaSbalQQebalS2f v tM x x						&D5 A		
QaSbalQQebalS2f v tYwyvt - vwxw.						85		
Qa Slai QQelai S 2O						85		
ex u tuxQ x x						&76D		
							076-5	0.5
Obaglá SQaOl						074575	87157D	93 6(
bja Qe\$fcebVQOgObaglalSQaOl						&7157D		

PROJ: Water Department LOC.: 1101 College St TITLE: Rooftop 30-Year Energy Output Calcs

Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

itee information, appli may vary from year to			, efficien	icy												
													A		nergy Use (MWH)	225.0 50%
													Assumed Ene	rgy Use During Sola	Production Hours	50%
Enormy Conor	ration Schodu	ule (Based on Pr	odicto		-1	1		Potontial P	evenue Valu			1	Simn	lified Cash Flow I	rejection	
Energy Gener	ation schedu	lie (based on Pr	euicte	su Loss	4			Potential Re	Estimated	le			Simp	ineu cash riow i	rojection	
							Energy									
						Utility	Savings	Utility	Potential		T	Cash				
				% of	or 1	Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Operation	Calendar	Annual Energy		1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
1	2021 2022	20,980		100% 99%	9.32% 9.25%	\$0.0764 \$0.0783	\$1,603 \$1.630	\$11,328 \$11.611	\$388 \$397	\$1,259	\$3,250 \$3,276	(\$13,225) (\$4,223)	(\$62)	(\$65)	(\$10,102) (\$1,075)	(\$10,102)
2	2022	20,812 20,646		99% 98%	9.25% 9.18%	\$0.0783 \$0.0803	\$1,630 \$1,657	\$11,611 \$11,901	\$397 \$407	\$1,249 \$1,239	\$3,276 \$3,303	(\$4,223)	(\$63) (\$64)	(\$66) (\$67)	(\$1,075)	(\$11,177) (\$12,228)
3	2023	20,040	kWh	98%	9.10%	\$0.0803	\$1,685	\$12,199	\$417	\$1,239	\$3,332	(\$4,223)	(\$65)	(\$69)	(\$1,025)	(\$13,253)
5	2024	20,317		97%	9.03%	\$0.0843	\$1,714	\$12,504	\$428	\$1,219	\$3,360	(\$4,223)	(\$67)	(\$70)	(\$999)	(\$14,252)
6	2026	20,154	kWh	96%	8.96%	\$0.0864	\$1,742	\$12,817	\$439	\$1,209	\$3,390	(\$4,223)	(\$68)	(\$71)	(\$972)	(\$15,223)
7	2027	19,993		95%	8.89%	\$0.0886	\$1,772	\$13,137	\$450	\$1,200	\$3,421	(\$4,223)	(\$69)	(\$73)	(\$944)	(\$16,168)
8	2028	19,833	kWh	95%	8.81%	\$0.0908	\$1,801	\$13,465	\$461	\$1,190	\$3,452	(\$4,223)	(\$71)	(\$74)	(\$916)	(\$17,083)
9	2029	19,674		94%	8.74%	\$0.0931	\$1,832	\$13,802	\$472	\$1,180	\$3,484	(\$4,223)	(\$72)	(\$76)	(\$886)	(\$17,969)
10	2030	19,517		93%	8.67%	\$0.0954	\$1,862	\$14,147	\$484	\$1,171	\$3,518	(\$4,223)	(\$74)	(\$77)	(\$856)	(\$18,825)
11	2031	19,361		92%	8.60%	\$0.0978	\$1,894	\$14,501	\$496		\$2,390	\$0	(\$75)	(\$79)	\$2,236	(\$16,589)
12	2032	19,206		92%	8.54%	\$0.1003	\$1,925	\$14,863	\$509		\$2,434	\$0	(\$77)	(\$80)	\$2,277	(\$14,312)
13	2033	19,052	kWh	91%	8.47%	\$0.1028	\$1,958	\$15,235	\$521		\$2,479	\$0	(\$78)	(\$82)	\$2,319	(\$11,993)
14	2034 2035	18,900		90%	8.40% 8.33%	\$0.1053 \$0.1080	\$1,991	\$15,616	\$534		\$2,525	\$0 \$0	(\$80)	(\$84)	\$2,362	(\$9,631)
15		18,749	kWh	89% 89%		\$0.1080 \$0.1107	\$2,024	\$16,006	\$548		\$2,572		(\$81)	(\$85)	\$2,405 \$2,450	(\$7,226)
16 17	2036 2037	18,599 18,450		89% 88%	8.27% 8.20%	\$0.1107 \$0.1134	\$2,058 \$2.093	\$16,406 \$16,816	\$561 \$575		\$2,620 \$2,668	\$0 \$0	(\$83) (\$85)	(\$87) (\$89)	\$2,450 \$2,495	(\$4,776) (\$2,281)
17	2037	18,302		88% 87%	8.20%	\$0.1134	\$2,093	\$10,810	\$590		\$2,718	\$0	(\$86)	(\$91)	\$2,541	\$259
19	2039	18,156		87%	8.07%	\$0.1192	\$2,164	\$17,668	\$605		\$2,768	\$0	(\$88)	(\$92)	\$2,588	\$2,847
20	2040	18,011		86%	8.00%	\$0.1222	\$2,200	\$18,110	\$620		\$2,820	\$0	(\$90)	(\$2,872)	(\$142)	\$2,706
21	2041	17,866		85%	7.94%	\$0.1252	\$2,237	\$18,562	\$635		\$2,872	\$0	(\$92)	(\$94)	\$2,686	\$5,392
22	2042	17,724	kWh	84%	7.88%	\$0.1283	\$2,275	\$19,026	\$651		\$2,926	\$0	(\$93)	(\$96)	\$2,736	\$8,128
23	2043	17,582		84%	7.81%	\$0.1315	\$2,313	\$19,502	\$667		\$2,980	\$0	(\$95)	(\$98)	\$2,787	\$10,915
24	2044	17,441		83%	7.75%	\$0.1348	\$2,352	\$19,990	\$684		\$3,036	\$0	(\$97)	(\$100)	\$2,839	\$13,754
25	2045	17,302	kWh	82%	7.69%	\$0.1382	\$2,391	\$20,489	\$701		\$3,092	\$0	(\$99)	(\$102)	\$2,891	\$16,645
26	2046	17,163		82%	7.63%	\$0.1417	\$2,431	\$21,001	\$719		\$3,150	\$0	(\$101)	(\$104)	\$2,945	\$19,590
27	2047	17,026		81%	7.57%	\$0.1452	\$2,472	\$21,527	\$737		\$3,209	\$0	(\$103)	(\$106)	\$3,000	\$22,590
28	2048	16,890		81%	7.51%	\$0.1488	\$2,514	\$22,065	\$755		\$3,269	\$0	(\$105)	(\$108)	\$3,055	\$25,645
29 30	2049 2050	16,755 16,620		80% 79%	7.45% 7.39%	\$0.1525 \$0.1564	\$2,556 \$2,599	\$22,616 \$23,182	\$774 \$793		\$3,330 \$3,392	\$0 \$0	(\$107) (\$109)	(\$110) (\$113)	\$3,112 \$3,170	\$28,757 \$31,927
30	2050	16,620	KVVN	79%	7.39%	\$0.1564	\$2,599	\$23,182	2/22		\$3,392	1 50	(\$109)	(\$113)	\$3,170	\$31,927

Assumed Percentage of Demand Charge Reduction*: 3.42%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 13/ard of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nelgov/dos/fy/130st/930bl.pdf
** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.ela.gov/lectricity/data/browser/
Note: All information provided is intended as good-faith order of magnitude estimation of costs and benefit values. Impacts of potential investment Tax incentive or depreciation benefits which may be leveraged through 3rd party

Estimation of Costs and benefit work impacts of potential investment rack incentive or depreciation benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

COSTS AND FINANCING

Total Installed Array Cost (incl. contingency, other owner expenses)	\$45,012
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$6,216
Operational Expense Allowance (insurance, O+M, 30- year)	\$7,880
Total Lifetime Project Costs	\$59,108
SAVINGS	
Total Lifetime Project Savings	\$91,035

OUTCOMES

Net Lifetime Project Costs or Savings	\$31,927	
Total Project Cost Payback (Years)	19.5	Years
Value to Cost Ratio	1.54	to 1.0
Electricity Production (kWh, 30-year)	561,559	kWh
Percent of Electricity Usage Covered by Solar (Year	9.32%	

21.0 225.0 50%

DC Nameplate Capacity Year 1 Generation Projection (MWH)

Site Solar Feasibility Reports by Building

Northfield Resource Center

Concept Design

The roof configuration of the Resource Center building is well suited for solar PV installation, with good orientation, and overall configuration, and only moderate rooftop equipment obstruction. Though much of the slopped roof configuration requires an easterly or westerly orientation for portions of the array, modeling indicates an overall well performing array.

The rooftop array is not capable of offsetting all of the electricity used on site. The rooftop array's first year generation is estimated to offset approximately 86% of the site's current reported electricity consumption. To meet the site's full annual use an additional ground mounted array is required. The site area to the SouthEast of the facility and parking lot is moderately well suited for a ground mounted solar array meeting 18% or more of the site's annual electric use. The combined arrays included in this concept can provide an estimated 104% of the site's total electric use, making the site Net Zero electricity.

Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.46:1 ratio (1.41 for rooftop, 1.71 for ground). As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.017 **SAVINGS** less than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax

Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

paleBLUEdot LLC

COSTS AND FINANCING (Rooftop Array)

Total Installed Array Cost (incl. contingency, other owner expenses)	\$840,024
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$116,010
Operational Expense Allowance (insurance, O+M, 30- year)	\$181,891
Total Lifetime Project Costs	\$1,137,925

Total Lifetime Project Savings	\$1,599,615
Total Lifetime Flojett Savings	21,033,010

OUTCOMES

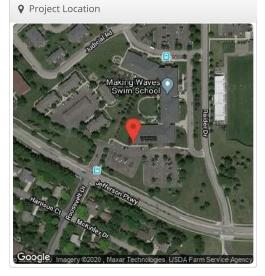
Net Lifetime Project Costs or Savings	\$461,690	~
Total Project Cost Payback (Years)	21.3	Years
Value to Cost Ratio	1.41	to 1.0
Electricity Production (kWh, 30-year)	12,564,136	kWh
Percent of Electricity Usage Covered by Solar (Year	86.08%	

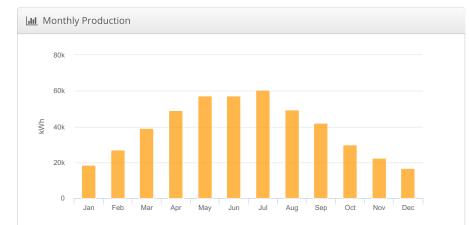
COSTS AND FINANCING (Ground Mounted Array)

Percent of Electricity Usage Covered by Solar (Year

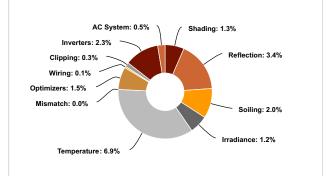
Total Installed Array Cost (incl. contingency, other owner expenses)	\$166,257	Recommende
Grants, Rebates, No-Obligation Funds	\$0	Site Priority:
Total Interest Payments	\$22,961	
Operational Expense Allowance (insurance, O+M, 30- year)	\$37,038	Priority 1
Total Lifetime Project Costs	\$226,255	
SAVINGS		-2
SAVINGS Total Lifetime Project Savings	\$387,412	
	\$387,412	
Total Lifetime Project Savings	\$387,412 \$161,156	
Total Lifetime Project Savings	\$161,156	
Total Lifetime Project Savings OUTCOMES Net Lifetime Project Costs or Savings	\$161,156 17.5	- C

18.18%


Note, values do not include social cost of carbon avoided by the solar array.



Design 1 City of Northfield Northfield Community Resource Center, 1651 Jefferson Parkway, Northfield, MN


🖋 Report	
Project Name	City of Northfield Northfield Community Resource Center
Project Address	1651 Jefferson Parkway, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

LIII System Metrics				
Design	Design 1			
Module DC Nameplate	397.3 kW			
Inverter AC Nameplate	306.0 kW Load Ratio: 1.30			
Annual Production	469.4 MWh			
Performance Ratio	81.9%			
kWh/kWp	1,181.6			
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)			
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751			

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,442.1	3.4%
Irradiance	Shaded Irradiance	1,423.8	-1.3%
(kWh/m²)	Irradiance after Reflection	1,375.8	-3.4%
	Irradiance after Soiling	1,348.2	-2.0%
	Total Collector Irradiance	1,348.3	0.0%
	Nameplate	535,091.6	
	Output at Irradiance Levels	528,565.0	-1.2%
	Output at Cell Temperature Derate	492,177.1	-6.9%
	Output After Mismatch	492,175.3	0.0%
Energy (kWh)	Optimizer Output	484,764.5	-1.5%
(KWIII)	Optimal DC Output	484,262.3	-0.1%
	Constrained DC Output	482,871.3	-0.3%
	Inverter Output	471,745.0	-2.3%
	Energy to Grid	469,386.0	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		10.1 °C
	Avg. Operating Cell Temp		23.4 °C
Simulation Met	rics		
	(Operating Hours	4673
		Solved Hours	4673

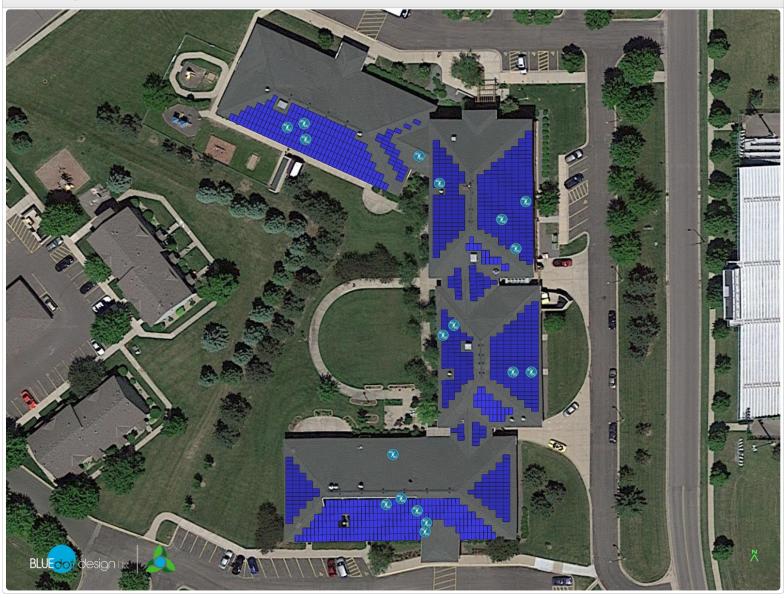
Condition Set															
Description	Cond	dition	Set 1												
Weather Dataset	TMY	TMY, 10km grid (44.45,-93.15), NREL (prospector)													
Solar Angle Location	Mete	Meteo Lat/Lng													
Transposition Model	Pere	Perez Model													
Temperature Model	Sanc	Sandia Model													
Tourse and the Nordal	Rack	к Туре			а			b			Temperature Delta				
Temperature Model Parameters	Fixed Tilt					.56		-0.075			3°C				
	Flush Mount				-2.81			-0.0455		_	0°C				
Soiling (%)	J	F	М		A	М		J	J		A	S	0	N	D
	2	2	2		2	2		2	2		2	2	2	2	2
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	% to 2.	5%												
AC System Derate	0.50	%													
Module Characterizations	Mod			Upl By	Jploaded By		Characterization								
inourie entracterizations		l-350 (iene li	Mar18 าc))			Fol: Lab	som)s		Heliene_72M- 350_Mar2018.pan, PAN					
Component	Devi	ice					Uploaded By			By		Characterization			
Component Characterizations	P40	0 NA (SolarEo	lge	∋)		Folsom Labs				Mfg Spec Sheet				
	SE1	7K (So	larEdge	e)			Folsom Labs				Spe	c Shee	t		

© 2020 Folsom Labs

Annual Production

🖨 Compo	🖨 Components									
Component	Name	Count								
Inverters	SE17K (SolarEdge)	18 (306.0 kW)								
Strings	10 AWG (Copper)	36 (3,289.2 ft)								
Optimizers	P400 NA (SolarEdge)	1,135 (454.0 kW)								
Module	Heliene Inc, 72M-350 (Mar18) (350W)	1,135 (397.3 kW)								

Annual Production Report produced by Del McNally


🔥 Wiring Zo	ones								
Description		Combiner Poles		String Siz	e	Stringing St			
Wiring Zone		12		15-32		Along Racki			
III Field Seg	ments								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Flush Mount	Portrait (Vertical)	26°	179.2068183697172°	0.0 ft	1x1	229	229	80.2 kW
Field Segment 2	Flush Mount	Portrait (Vertical)	24°	90°	0.0 ft	1x1	54	54	18.9 kW
Field Segment 3	Flush Mount	Portrait (Vertical)	29°	270°	0.0 ft	1x1	46	46	16.1 kW
Field Segment 4	Flush Mount	Portrait (Vertical)	26°	180°	0.0 ft	1x1	26	26	9.10 kW
Field Segment 5	Flush Mount	Portrait (Vertical)	26°	90.29382193465074°	0.0 ft	1x1	9	9	3.15 kW
Field Segment 6	Flush Mount	Portrait (Vertical)	33°	269.35985033047643°	0.0 ft	1×1	5	5	1.75 kW
Field Segment 7	Flush Mount	Portrait (Vertical)	26°	90°	0.0 ft	1x1	135	135	47.3 kW
Field Segment 8	Flush Mount	Portrait (Vertical)	35°	269.3489396197705°	0.0 ft	1x1	75	75	26.3 kW
Field Segment 9	Flush Mount	Portrait (Vertical)	26°	87.78025820866333°	0.0 ft	1x1	19	19	6.65 kW
Field Segment 10	Flush Mount	Portrait (Vertical)	30°	267.78179005850154°	0.0 ft	1x1	11	11	3.85 kW
Field Segment 11	Flush Mount	Portrait (Vertical)	26°	179.6086287353371°	0.0 ft	1×1	14	14	4.90 kW
Field Segment 12	Flush Mount	Portrait (Vertical)	26°	89.46135463620249°	0.0 ft	1x1	188	188	65.8 kW
Field Segment 13	Flush Mount	Portrait (Vertical)	35°	269.9768539732487°	0.0 ft	1x1	105	105	36.8 kW
Field Segment 14	Flush Mount	Portrait (Vertical)	26°	113.77269670116834°	0.0 ft	1x1	24	24	8.40 kW
Field Segment 15	Flush Mount	Portrait (Vertical)	26°	204.3138368874404°	0.0 ft	1x1	195	195	68.3 kW

Oetailed Layout

?

S Detailed Layout

Rooftop

Community Resource 1651 Jefferson Parkway Date

5/9/2020

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Information on Total Production (kWh) **Your Solar Array Your Electric Use** 12.564.136 kWh (from solar bid) (all meters) **Total Electricity Bill Savings** \$1.599.615 2021 First Year of Operation Xcel Energy Electric Utility Cash Purchase Payback otal Annual Electric Use Allowance for annual expenses and financing costs excluded 397.30 Array Size (kW DC) 545,280 kWh) Total Annual Demand (kW) 350 Watt Rating 1.716.00 Capital Cost \$840,024 Number of Solar Modules 0, 1.135 Building Area (Square Feet Grants, Rebates, No-Obligation Funds \$0 Roof) Number of Solar Modules Est % of Elec used betwee C 65.00% Net Cost \$840,024 Ground) Oam and 3pm Number of Solar Modules Estimated annual electric 0 2.50% Simple Project Payback 15.75 Years scalation rate** (Carport) lectric Use Intensity 306.00 Capacity (kW AC) N/A kWh/SF) Financed Purchase Payback Efficiency Warrantee Level UI as % of National Allowance for annual expenses excluded. Financing costs included 80.00% N/A verage aximum Annual Production 0.80% \$51,160.00 Annual Energy Charge (\$) Financed Capital Cost \$956.034 egradation Rate (%) 469,400 First Year Generation (kWh) \$11,451.00 Annual Demand Charge (\$) Financed Capital Payback 17.93 Years \$799,954.03 Fotal Contractor Bid Fotal Annual Electric Cost \$62,611.00 Financed Array Lifetime Payback Other Owner Expenses (legal Effective Electric Rate 30 year allowance for annual expenses and financing costs included. \$2,500.00 \$0.0938 \$/kWh)* tc.) ffective Demand Charge 30 year Operational Expense Allowance \$37,570.05 Owner Contingency (if any) \$6.67 \$181,891 (Ś/kW) (ins/O+M) Average Monthly Demand \$840,024.08 Total Project Budget 143.00 Financed Array Lifetime Cost \$1.137.925 kW) \$2.11 Total Cost Per Watt Financed Array Lifetime Payback 21.34 Years **Financial** Information \$0 Net Project Savings (30 year) Information on Array Cash / Down \$168.004.82 Total Electricity Bill Savings Per kWh \$0.1273 ayment **Your Solar Array Operation and** \$0.00 Rebates, Grants, etc. Project Cost Per Solar Per kWh \$0.0906 Maintenance \$0.00 Other no-obligation funds Net Electricity Bill Savings Per kWh \$0.0367 (from solar b nnual O+M Costs (per kW Remaining Array Cost \$672,019.26 Value to Cost Ratio \$4.20 1.41 to 1.0 Requiring Financing 2.00% O+M Annual Escalation Rate nnual Insurance Costs Loan / Bond Interest Rate 3.25% \$4.00 per kW DC) (6 year) verter Replacement Cost Loan/Bond Term \$50,258 10 Assumes year 20) assumed) Effective Electric Rate is calculated based on user entry for Annual Energy Charge and Total Annual Electric Use and may differ from utility reported rate per W/h. * Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/

B t ttxtzx wxwu 'xat texxtuxQxz Xtu t 1 wyxw z vt wvx t wxvttxw 7575 w t 3 M y t x t x E 5 'CeldgUba Y La U geMgUba Obfgf XG5 MKRUGOWK) MPY La U geMgU C XWa P McIOh U LgUBa XWa P McIOh U LgUBa XWa P MCOck U LgUBa XWa P MCOck U LgUBa (x Y w X 20 x 2 y -TX x x 8:5j	x t x ut xw v v 0 Uwvx d t 6 5 5 5 5 5 5 5 5 6 668: 5 5 5 5 5 5 6 668: 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	h M 7: 55 5 9755 8: 55 8: 55 6CI 6CI 98B58 65 A66C3 98B58 A55 A66C3 A: 99	Xtu C 6355 6 c Xv O c Xv O <	x t x Ot tv c xv 3355 fhN gbgMX &7155 &8:61956	8D83 9AD9 9AD9 cQeOQs g gb gWX 5385(
B t ttxtzx wxwu 'xat texxtuxQxz Xtu t 1 wyxw z vt wvx t wxvttxw 7575 w t 3 M y t x t x E 5 'CeldgUba Y La U geMgUba Obfgf XG5 MKRUGOWK) MPY La U geMgU C XWa P McIOh U LgUBa XWa P McIOh U LgUBa XWa P MCOck U LgUBa XWa P MCOck U LgUBa (x Y w X 20 x 2 y -TX x x 8:5j	V V O Uwvx d t 668: 5 5 668: 6 668: 6 6 6 6 6 6 6 6 6 6 6 6 6	6355 h M 7:55 5 9755 8:55 8:55 6CC 6CC 98856 A66C3 5 A66C3 A5 5 A66C3 A5 5 6C2 9856 A5 5 5 6 6 6 7 9856 5 5 6 6 6 6 7 9856 5 6 6 6 6 6 6 6 6 6 6 6 6 6	Xtu C 6355 6 c XV O 5 & &71 55 5 & &5 5 & &5 8 & &5	0 u xw 3655 fhN gobgMX &7155	cQeOQa g gbgMX 5385(7C35(535)(535
'Cekigliba Y Lá Ul geMgliba Obfgf X05 MKIRUOWK) MPY Lá Ul geMgü C XWa P McLOh Ul	d t 6668: 5 668: 668: 668: 668: 6 668: 6 668: 6 6 6 6	6355 h M 7:55 5 9755 8:55 8:55 6CC 6CC 98856 A66C3 5 A66C3 A5 5 A66C3 A5 5 6C2 9856 A5 5 5 6 6 6 7 9856 5 5 6 6 6 6 7 9856 5 6 6 6 6 6 6 6 6 6 6 6 6 6	6355 6 c xv 0 5 & &71 55 5 & &5 5 & &5 5 & &5 5 & &5 5 & &5 6 & &5 6 & &5 6 & &5 8 & &6 8	3355 gbg/MX 8471155	CD29: (7C3 5(5385(7C3 5(5355(5355(5355(5355(5355(5355(5355(5355(5355(5357(2697(
Y Lá U geMgUba Obfgf XQ5 MXIRUFUOMX) MPY Lá UfgeMgU C XMaP M d'Oh UfugUba XMaP M d'Oh UfugUba XMaP f MXQ2Qk UfgUa S fgeh OgheQf fb UX NbeLa S f fhei Q gMXXMgUba Obfgf j jt et z ci Y w x 26 y -Tx x x 8:5j. 8:5 ci Y w x 25 wY -Tx x x 8:5j. 8:5 ci Y w x 20t 4ct z -Tx x x 8:5j. 8:5 U x x b x f v t Nbf Qxv vt Nbf etv z 26 y etv z 25 wY etv z 20t ft x gt U t t Xtu f x Rx v z f x S tw z	6 5 5 5 5 5 5 6 6 6 8 6 6 6 6 6 6 6 6 6	7: 55 5 9755 8: 55 6CC 6CC 98856 A5 A66C5 A: 99 A: 99 5 20 20 20 20 20 20 20 20 20 20 20 20 20	5 &71 55 5 & 85 5 & 85 5 & 85 5 & 85 5 & 85 6 & 85 8 & 898 B58 8 & 808 B58 8 & 846 T65 8 & 846 T69 8 & 846 T69	gbgMX &7155	CD29: (7C3 5(5385(7C3 5(5355(5355(5355(5355(5355(5355(5355(5355(5355(5357(2697(
XQS MXIRBIOMX) MPY Laible Between the second se	5 5 5 668: 5 6 668: 6 668: 6 6 6 6 6 6 6 6 6 6 6 6 6	5 9755 8:55 8:55 6CL 6CL 98556 A5 5 A66C2 5 A66C2 5 A66C2 5 2 6 6 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 5 2 5 5 5 5	5 85 5 85 5 85 5 85 5 85 6 85 8 876916C 8 85 8 8981558 8 8081558 5 884C1555 5 8846159 8 8846159		CDB9: (7C3 5(5355(5355(5355(5355(5355(C559(C397(
XQS MXIRBIOMX) MPY Laible Between the second se	5 5 5 668: 5 6 668: 6 668: 6 6 6 6 6 6 6 6 6 6 6 6 6	5 9755 8:55 8:55 6CL 6CL 98556 A5 5 A66C2 5 A66C2 5 A66C2 5 2 6 6 5 2 8 5 2 8 5 2 8 5 2 8 5 2 8 5 5 2 5 5 5 5	5 85 5 85 5 85 5 85 5 85 6 85 8 876916C 8 85 8 8981558 8 8081558 5 884C1555 5 8846159 8 8846159	88: 6°056	7C3 5(5335(53355(: 327(D35A(53355(C369(C387(
XWa P f MXQ2Qk Ugula S fgeh OgheQf fb UX NbeLa S f fhei Q gMXXMgUba Obfgf jt et z ci Y w x 2e y -Tx x x 8: 5j. 8: 5 ci Y w x 22 wY -Tx x x 8: 5j. 8: 5 ci Y w x 20 x 4ct z -Tx x x 8: 5j. 8: 5 U x x b x f v t Nbf Qxv vt Nbf etv z 2e y etv z 2e etv z 25 wY etv z 2e ft x gt U t t Xtu f x Rx v z f x St w z	5 5 5 6668: 5 6 668: 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 9755 8:55 6CC 6CC 98B56 A6C 5 A66C3 A5 5 A66C3 4:9/ 5 5 8 2 8 5 5 2 6 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 85 5 85 5 85 0 8769166C 0 85 8 8981558 5 884C1555 5 885 9 88615C9 8 84615C9	&B: 6 P56	7C3 5(5335(53355(: 327(D35A(53355(C369(C387(
fb tXhbetaisf fheiQ gMXXMgUba Obfgf jt et z ci Y w x 2e y -Tx x x8:5j. 8:5 ci Y w x 25 wY -Tx x x8:5j. 8:5 ci Y w x 20t 4ct z-Tx x x8:5j. 8:5 U x x b x f v t Nbf Qxv vt Nbf etv z 2e y etv z 25 wY etv z 20t ft x gt U t t Xtu f xRx v z f x Stw z	5 5 668: 5 668: 6 6 6 6 6 6 6 6 6 6 6	9755 8: 55 6CC 6CC 98858 A5 5 A66C3 4: 59 A: 99	5 85 5 85 0 8769166C 0 85 8 8981858 5 884C1655 5 85 8 84615C9 8 84615C9	&B: 61956	7C3 5(5335(53355(: 327(D35A(53355(C369(C387(
fheiQ gMXXMgUbaObfgf jt et z ciYwx2e y -Txxx8:5j. 8:5 ciYwx25 wY -Txxx8:5j. 8:5 ciYwx20t 4ct z-Txxx8:5j. 8:5 U xx b x f v tNbf QxvvtNbf etv z2e y etv z2S wY etv z2Ot ftxgt U tt Xtu f xRxvz f xStw z	5 668: 5 668: 6 6 6 6 6 6 6 6 6 6	8: 55 6CL 6CL 98B5E A5 5 5 A66CS A: 99 5	5 & &5 0 & &769 156C 0 & &55 0 & &85 8 & &808 1858 5 & &AC 1555 0 & &A6 159 0 & &A6 159	&B: 6 1956	7C3 5(5335(53355(: 327(D35A(53355(C369(C387(
gMXXVgUba Obfgf jt et z ci Y w x 2e y -Tx x x 8:5j. 8:5 ci Y w x 25 wY -Tx x x 8:5j. 8:5 ci Y w x 20t 4ct z -Tx x x 8:5j. 8:5 U x x b x f v t Nbf Qxv vt Nbf etv z 2e y etv z 2S wY etv z 2Ot ftx gt U t t Xtu f x Rx v z f x Stw z	668: 5 6 668: 6 6 6 6 6 6 6 6	6CC 6CC 98858 A5 5 6 6 6 6 6 6 6 6 6 6 5 5	2 &769 166C 3 & &5 3 & &98 1558 5 & &AC 1555 5 & & &5 9 & &A6 15C A & & &1 9A	&B: 61956	7C3 5(5335(53355(: 327(D35A(53355(C369(C387(
ci Y w x 2e y -Tx x x8:5j. ci Y w x 25 wY -Tx x x8:5j. ci Y w x 20t 4ct z-Tx x x8:5j. b x f v t Nbf Qxv vt Nbf etv z 2c y etv z 2c y etv z 2c wY etv z 2c t ft x gt U t t Xtu f x S tw z	5 5 6668: 6 6 6 6 6 6 6 6 6	6CC 6CC 98858 A5 5 5 466C9 A: 9/ 5	2 85 8 8981858 5 8AC1655 5 85 9 8A616C9 A 8A: 1 9A	&B: 61956	7C3 5(5335(53355(: 327(D35A(53355(C369(C387(
ciYwx25 wY -Txxx8:5j. 8:5 ciYwx20t 4ct z-Txxx8:5j. 8:5 Uxx b x f v tNof QxvvtNof etv z2e y etv z2S wY etv z2S wY etv z2Ot ftxgt U tt Xtu f xRxvz f xStw z	5 5 6668: 6 6 6 6 6 6 6 6 6	6CC 6CC 98858 A5 5 5 466C9 A: 9/ 5	2 85 8 8981858 5 8AC1655 5 85 9 8A616C9 A 8A: 1 9A		5355(5355(237(5355(C369(C387(
ciYwx20t 4ct z-Txxx8:5j. 8:5 Uxx b x f v tNbf QxvvtNbf etv z2e y etv z25 wY etv z20t ftxgt U tt Xtu f xRxvz f xStw z	5 668: 6 6 6 6 6 6 6 6	6CL 98B58 5 6 A66C9 A: : 9A 5	2 85 8 8981858 5 8AC1655 5 85 9 8A616C9 A 8A: 1 9A		5355(237(5355(C369(C387(
Uxx bx fvtNbf QxvvtNbf etvz2ey etvz2SwY etvz2SwY ftxgt UttXtu fxRxvz fxStwz	6 668: 6 6 6 6 6 6	98858 A5 5 A66C9 A: : 9A 5	8 8981858 5 &AC1655 5 & &5 9 &A616C9 A &A: 1 9A		: 3C7(D35A(5355(C369(C387(
b x f v t Nbf Qxv vt Nbf etv z 2e y etv z 25 wY etv z 2Ot ftx gt U t t Xtu f x Rx v z f x S tw z	668: 6 6 6 6 6 6	A5 5 A66C9 A: : 94 5	5 &AC1655 5 & &5 9 &&A616C9 A &&A: 1.9A		D35A(5355(C359(C387(
f v t Nbf Qxv vt Nbf etv z 2e y etv z 25 wY etv z 20t ftx gt U t t Xtu f x Rx v z f x S tw z	6 6 6 6 6	5 A66C9 A: : 94 5	5 & &5 9 & &A616C9 A & &A: 1 9A		5355(C369(C387(
Qxv vt Nbf etv z 2e y etv z 25 wY etv z 20t ftx gt U t t Xtu f x Rx v z f x S tw z	6 6 6 6	A66C9 A: : 94	8A616C9 8A: 1.9A		C359(C387(
etv z 2e y etv z 2S wY etv z 2Ot ftxgt U tt Xtu f x Rx v z f x Stw z	6 6 6	A: : 94 5	A & A:19A		C387(
etv z 2S wY etv z 2Ot ftxgt U tt Xtu f x Rx v z f x S tw z	6 6	5			
ftxgt Utt Xtu fxRxvz fxStwz		5			
Utt Xtu fxRxvz fxStwz	6	-	5 85		5355(
f x Rx v z f x S tw z					5355(
f xS tw z	6				B3 A(
	5				5355(
	5				5355(
e yct v'4ex t	6				8366(
N w zex t 2a Uv wxw	5				5355(
TtYtex t2a Uvwxw cx z1U xv 1U xv xv	5				5355(
cx z1U xv 1U xv xv NwO zx v	6				:3C7(A377(
b x'xtw	6				G3 8(
C y	6				C3 8(
(QXbcQebiQeTQMPMaPcebRQffUbaMXRQQf cebOheQYQaqYMaMSQYQaq2b x ex xx t x4c v x x Yttzx x			85	89C1 : 8	: 3BC(
ceb.OnleQTQagYMaMsQrQag2D x ex x x t x 4c v x x ftt2x x ceb.OnleQYQagYMaMSQYQag2Px z 4N wctv tzx			∞ &6CBC:		
cebOheQYQagYMaSQYQag2h c xvqx Pxx t - xv xv 1 vx	1twtw		&61DCB		
QaSlalQQelalS2f v t M x x			&7818AC		
QaSbalQQebaS2f v tYwyvt - v wxw.			85		
Qa Sla QQela S 20			85		
ex u tuxQ x x			891969		
				80D1 D5	0700/
a glái S Cpa Ol bja Qe\$f ceb VQOq Obaqlai S Qa Ol			&8B1 B5	&8B1 B5	939B(
טן מעבא נכט אעט טטמ שום עם טו			000105		

PROJ: Community Resource Center LOC: 1651 Jefferson Parkway TITLE: Rooftop 30-Year Energy Output Calcs

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

09-May-20	paleBLUEdotu:
DC Nameplate Capacity	397.3
Year 1 Generation Projection (MWH)	469.4

545.3 65%

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

Energy Gener	ation Schedu	ile (Based on Pr	edicte	ed Loss	5)	Potential Revenue Value							Simplified Cash Flow Projection				
							Energy		Estimated								
						Utility	Savings	Utility	Potential			Cash					
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted	
Operation	Calendar	Annual Energy		1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash	
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	•	Reduction		Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow	
rear	2021	469,400	1.14/1-	100%	86.08%	\$0.0938	\$33,254	(annual) \$11,451	\$3,181	Payment \$0	\$36,435	(\$246,808)	(\$1,589)	(\$1,669)	(\$213,630)	(\$213,630)	
1	2021	465,645	kWh	99%	85.40%	\$0.0938	\$33,254 \$34,085	\$11,451 \$11,737	\$3,261	\$0 \$0	\$30,435 \$37,346	(\$78,803)	(\$1,621)	(\$1,702)	(\$44,780)	(\$258,410)	
2	2022	461,920	kWh	99% 98%	85.40% 84.71%	\$0.0982	\$34,085 \$34,937	\$12,031	\$3,261 \$3,343	\$0 \$0	\$37,346 \$38,280	(\$78,803)	(\$1,653)	(\$1,736)	(\$43,912)	(\$258,410) (\$302,322)	
3	2023	458,224	kWh	98% 98%	84.71% 84.03%	\$0.0986 \$0.1010	\$35,811	\$12,031 \$12,331	\$3,343	\$0 \$0	\$38,280 \$39,237	(\$78,803)	(\$1,686)	(\$1,771)	(\$43,023)	(\$345,345)	
4	2024	458,224 454,558	kWh	98% 97%	84.03%	\$0.1010	\$35,811 \$36,706	\$12,331 \$12,640	\$3,420	\$0 \$0	\$40,218	(\$78,803)	(\$1,720)	(\$1,806)	(\$42,111)	(\$387,457)	
5	2025	450,922	kWh	96%	83.36%	\$0.1036 \$0.1062	\$36,706 \$37,624	\$12,640 \$12,956	\$3,512 \$3,600	\$0 \$0	\$40,218 \$41,223	(\$78,803)	(\$1,755)	(\$1,806) (\$1,842)	(\$41,176)	(\$428,633)	
5	2026	450,922	kWh	96% 95%	82.03%	\$0.1082 \$0.1088	\$37,624 \$38,564	\$12,956 \$13,280	\$3,600	\$0 \$0	\$41,223 \$42,254	(\$78,803)	(\$1,790)	(\$1,842) (\$1,879)	(\$40,218)	(\$468,851)	
,	2027	443,736	kWh	95%	81.38%	\$0.1088	\$39,529	\$13,280	\$3,782	\$0	\$43.310	(\$78,803)	(\$1,825)	(\$1,917)	(\$39,235)	(\$508,086)	
9	2028	443,736	kWh	95% 94%	81.38%	\$0.1115	\$39,529 \$40,517	\$13,952	\$3,876	\$0 \$0	\$43,310 \$44,393	(\$78,803)		(\$1,955)	(\$38,227)	(\$546,313)	
	2029		kWh	94% 93%	80.73%	\$0.1143 \$0.1172	\$40,517 \$41,530			\$0 \$0		(\$78,803)	(\$1,862)		(\$37,193)	(\$583,506)	
10	2030	436,665 433.171	kWh	93% 92%	80.08% 79.44%	\$0.1172	\$41,530	\$14,301 \$14,658	\$3,973	ŞU	\$45,503 \$46,640	\$0	(\$1,899)	(\$1,994) (\$2,034)	\$42,669	(\$540,837)	
11	2031	433,171 429,706	kWh	92% 92%	79.44%	\$0.1201	\$43,632		\$4,073 \$4,174			\$0	(\$1,937)	(\$2,034)	\$43,756	(\$497,081)	
12 13	2032	429,706	kWh	92% 91%	78.80%	\$0.1231	\$43,632 \$44,723	\$15,025 \$15,400	\$4,174 \$4,279		\$47,806 \$49,002	\$0	(\$1,976) (\$2,015)	(\$2,116)	\$44.870	(\$452,211)	
13	2033	420,208	kWh	91%	77.55%	\$0.1262	\$44,723 \$45,841	\$15,400	\$4,279 \$4,386		\$49,002 \$50,227	\$0	(\$2,015)	(\$2,116) (\$2,159)	\$46,012	(\$406,199)	
14	2034	422,858 419,475	kWh	90% 89%	76.93%	\$0.1293 \$0.1326	\$45,841 \$46,987	\$15,785 \$16,180	\$4,380 \$4,495		\$50,227 \$51,482	\$0	(\$2,056) (\$2,097)	(\$2,202)	\$46,012	(\$406,199) (\$359,015)	
				89% 89%								\$0 \$0			\$48,385		
16	2036 2037	416,120	kWh	89% 88%	76.31%	\$0.1359	\$48,162	\$16,584	\$4,608		\$52,769	\$0 \$0	(\$2,139)	(\$2,246)	\$48,385	(\$310,631)	
17	2037	412,791	kWh kWh	88% 87%	75.70%	\$0.1393	\$49,366	\$16,999 \$17,424	\$4,723		\$54,089	\$0	(\$2,182)	(\$2,291)	\$50,879	(\$261,014)	
18	2038	409,488		87% 87%	75.10%	\$0.1428 \$0.1463	\$50,600		\$4,841		\$55,441	\$0	(\$2,225)	(\$2,337)	\$52,174	(\$210,135)	
19		406,212	kWh kWh	87%	74.50%		\$51,865	\$17,860	\$4,962		\$56,827	\$0	(\$2,270)	(\$2,383)	\$3,243	(\$157,961)	
20	2040 2041	402,963	kwn kWh	86% 85%	73.90% 73.31%	\$0.1500 \$0.1537	\$53,162	\$18,306	\$5,086 \$5,213		\$58,248 \$59,704	\$0 \$0	(\$2,315) (\$2,361)	(\$52,689)	\$54,911	(\$154,718) (\$99,807)	
21	2041	399,739 396,541	kWh	85% 84%	72.72%	\$0.1537	\$54,491 \$55,853	\$18,764 \$19,233	\$5,213 \$5,344			\$0		(\$2,431) (\$2,480)		(\$43,499)	
22 23	2042	393,369	kWh	84% 84%	72.12%	\$0.1576 \$0.1615	\$55,853 \$57,249	\$19,233 \$19,714	\$5,344 \$5,477		\$61,196 \$62,726	\$0 \$0	(\$2,409) (\$2,457)	(\$2,529)	\$56,308 \$57,740	\$14,241	
23	2043	393,369	kWh	84% 83%	72.14%	\$0.1615	\$57,249 \$58,680	\$19,714 \$20,207	\$5,477 \$5,614		\$62,726 \$64,294	\$0	(\$2,506)	(\$2,529)	\$59,209	\$14,241 \$73,450	
				83%								\$0 \$0			\$60,714		
25	2045	387,100	kWh		70.99%	\$0.1697	\$60,147	\$20,712	\$5,754		\$65,902	\$0	(\$2,556)	(\$2,631)	\$62,258	\$134,164	
26	2046 2047	384,003	kWh	82% 81%	70.42%	\$0.1739 \$0.1783	\$61,651	\$21,230	\$5,898		\$67,549	\$0	(\$2,607)	(\$2,684)	\$63,841	\$196,422	
27		380,931	kWh kWh	81% 81%	69.86%		\$63,192 \$64,772	\$21,760	\$6,046		\$69,238	\$0	(\$2,659)	(\$2,738)	\$65,464	\$260,264	
28	2048 2049	377,884	kwn kWh	81% 80%	69.30% 68.75%	\$0.1827 \$0.1873		\$22,304	\$6,197		\$70,969	\$0	(\$2,713)	(\$2,792)	\$67,128	\$325,728	
29 30	2049 2050	374,861	kwn kWh	80% 79%	68.75% 68.20%	\$0.1873 \$0.1920	\$66,391	\$22,862	\$6,352		\$72,743	\$0	(\$2,767)	(\$2,848)		\$392,856	
50	2050	371,862	кvvn	79%	oð.20%	\$0.1920	\$68,051	\$23,433	\$6,511		\$74,562	1 50	(\$2,822)	(\$2,905)	\$68,834	\$461,690	

Assumed Percentage of Demand Charge Reduction*: 27.78%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NRE report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: all information perovided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

COSTS AND FINANCING

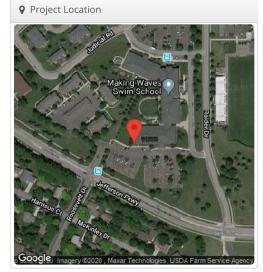
Total Installed Array Cost (incl. contingency, other owner expenses)	\$840,024
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$116,010
Operational Expense Allowance (insurance, O+M, 30- year)	\$181,891
Total Lifetime Project Costs	\$1,137,925
SAVINGS	

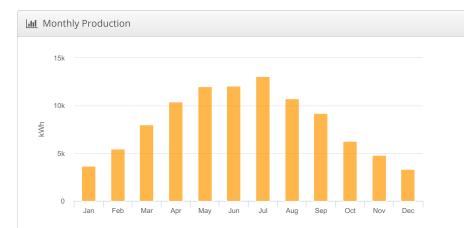
Total Lifetime Project Savings

OUTCOMES

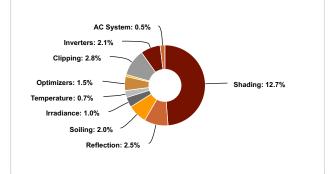
Net Lifetime Project Costs or Savings	\$461,690	
Total Project Cost Payback (Years)	21.3	Years
Value to Cost Ratio	1.41	to 1.0
Electricity Production (kWh, 30-year)	12,564,136	kWh
Percent of Electricity Usage Covered by Solar (Year	86.08%	

\$1,599,615




Groundmounted City of Northfield Northfield Community Resource Center, 1651 Jefferson Parkway,

Northfield, MN


🖋 Report	
Project Name	City of Northfield Northfield Community Resource Center
Project Address	1651 Jefferson Parkway, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

III System Metrics									
Design	Groundmounted								
Module DC Nameplate	80.9 kW								
Inverter AC Nameplate	66.6 kW Load Ratio: 1.21								
Annual Production	99.13 MWh								
Performance Ratio	76.8%								
kWh/kWp	1,226.1								
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)								
Simulator Version	edef351a35-38368f3ee3-9050205824- c43eec09b7								

🖌 Annual Production

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,595.7	14.4%
Irradiance	Shaded Irradiance	1,393.7	-12.7%
(kWh/m²)	Irradiance after Reflection	1,358.9	-2.5%
	Irradiance after Soiling	1,331.8	-2.0%
	Total Collector Irradiance	1,332.2	0.0%
	Nameplate	108,339.5	
Energy (kWh)	Output at Irradiance Levels	107,204.7	-1.0%
	Output at Cell Temperature Derate	106,419.8	-0.7%
	Output After Mismatch	106,419.6	0.0%
	Optimizer Output	104,867.1	-1.5%
	Optimal DC Output	104,642.7	-0.2%
	Constrained DC Output	101,712.1	-2.8%
	Inverter Output	99,626.7	-2.1%
	Energy to Grid	99,128.5	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		10.1 °C
	Avg. Operating Cell Temp		16.2 °C
Simulation Met	ics		
	C	perating Hours	4673
		Solved Hours	4673

Annual Production Report produced by Del McNally


Condition Set														
Description	Cond	dition	Set 1											
Weather Dataset	тмү	, 10kr	n grid	(44	4.45,-9	3.1	5), NF	REL (p	rospe	ctor)				
Solar Angle Location	Mete	Meteo Lat/Lng												
Transposition Model	Pere	Perez Model												
Temperature Model	Sandia Model													
	Rack Type			a		b		Te	emper	ature	Delta			
Temperature Model Parameters	Fixe	d Tilt			-3.56	;	-0.0	-0.075		3°C				
	Flus	-2.81		-0.0	-0.0455		0°C							
Soiling (%)	J	F	М		AI	N	J	J	А	S	0	Ν	D	
	2	2	2		2	2	2	2	2	2	2	2	2	
Irradiation Variance	5%													
Cell Temperature Spread	4° C													
Module Binning Range	-2.5%	% to 2	.5%											
AC System Derate	0.50	%												
Module Characterizations	Mod	lule			Uploaded By			Characterization						
module characterizations		1 490 iene)			Fols Labs			Spec Sheet Characterization, PAN						
	Dev	ice					Uploaded By			Characterization				
Component Characterizations	P40	0 NA (SolarE	d٤	ge)		Folsom Labs			Mf	g Spec	Sheet		
	SE3	3.3K (SolarE	dg	e)		Folso	m Lał	DS	Spe	ec She	et		

🖨 Components										
Component	Component Name Count									
Inverters	SE33.3K (SolarEdge)	2 (66.6 kW)								
Strings	10 AWG (Copper)	7 (565.1 ft)								
Optimizers	P400 NA (SolarEdge)	165 (66.0 kW)								
Module	Heliene, 96M 490 (490W)	165 (80.9 kW)								

👪 Wiring Zor	nes								
Description		Combiner Poles		Sti	ring Size	Stringing			
Wiring Zone 12			16	-25	Along Rac				
Field Segm	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	22°	180°	14.6 ft	3x1	55	165	80.9 kV

S Detailed Layout

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Information on Total Production (kWh) **Your Solar Array Your Electric Use** 2.653.351 kWh (from solar bid) (all meters) **Total Electricity Bill Savings** \$387.412 2021 First Year of Operation Xcel Energy Electric Utility Cash Purchase Payback otal Annual Electric Use Allowance for annual expenses and financing costs excluded 80.90 Array Size (kW DC) 545,280 kWh) Total Annual Demand (kW) 490 Watt Rating 1.716.00 Capital Cost \$166.257 Number of Solar Modules 0, Building Area (Square Feet Grants, Rebates, No-Obligation Funds \$0 Roof) Number of Solar Modules Est % of Elec used betwee 165 65.00% Net Cost \$166,257 Ground) Oam and 3pm Number of Solar Modules Estimated annual electric 0 2.50% Simple Project Payback 12.87 Years scalation rate** (Carport) lectric Use Intensity 66.60 Capacity (kW AC) N/A kWh/SF) Financed Purchase Payback Efficiency Warrantee Level UI as % of National Allowance for annual expenses excluded. Financing costs included 80.00% N/A verage aximum Annual Production 0.80% \$51,160.00 Annual Energy Charge (\$) Financed Capital Cost \$189.218 egradation Rate (%) 99,130 First Year Generation (kWh) \$11,451.00 Annual Demand Charge (\$) Financed Capital Payback 14.65 Years \$156,178.98 Fotal Contractor Bid Fotal Annual Electric Cost \$62,611.00 Financed Array Lifetime Payback Other Owner Expenses (legal Effective Electric Rate 30 year allowance for annual expenses and financing costs included. \$2,500.00 \$0.0938 \$/kWh)* tc.) ffective Demand Charge 30 year Operational Expense Allowance \$7,578.30 Owner Contingency (if any) \$6.67 \$37,038 (Ś/kW) (ins/O+M) Average Monthly Demand \$166,257.28 Total Project Budget 143.00 Financed Array Lifetime Cost \$226.255 kW) \$2.06 Total Cost Per Watt Financed Array Lifetime Payback 17.52 Years **Financial** Information \$0 Net Project Savings (30 year) Information on Array Cash / Down \$33,251.46 Total Electricity Bill Savings Per kWh \$0,1460 ayment **Your Solar Array Operation and** \$0.00 Rebates, Grants, etc. Project Cost Per Solar Per kWh \$0.0853 Maintenance \$0.00 Other no-obligation funds Net Electricity Bill Savings Per kWh \$0.0607 (from solar b nnual O+M Costs (per kW Remaining Array Cost \$133,005.82 Value to Cost Ratio \$4.20 1.71 to 1.0 Requiring Financing DC) 2.00% O+M Annual Escalation Rate nnual Insurance Costs Loan / Bond Interest Rate 3.25% \$4.00 per kW DC) (6 year) verter Replacement Cost Loan/Bond Term \$10,234 10 Assumes year 20) assumed) Effective Electric Rate is calculated based on user entry for Annual Energy Charge and Total Annual Electric Use and may differ from utility reported rate per W/h. * Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/

Project Community Resource

1651 Jefferson Parkway Groundmounted Date

5/8/2020

T k T AFEAc i Y					:H7/ 78:	
h f S7lioi i l				UT g	т	H: 8
ayEO uy yxyx uybxyzYu' xyuxuyyu u y3O 756B u uuyu'y xyxv yau ueyyuvyQy'Xuvu 1 xzyx w xwyuxywuuyx 7575x u3M z u y u	му 'ми w	vuyvuyx v		s AY	i	1184
Mwy E 5			/uyu 5365	Xuv 6365	O v yx 6365 InS	iVkTVgnr (
UVITkbimbhg		j	n R	і Т	mhmRe	mh mRe
RUf bgbimkRmbhg Thimi					- B6E::	ASE:.
XQ\$ MX1RUFOMX) MPY Latuf ge Mglü Q		6	7: 55	&715	5	
XMa P Md Oh blogbba		5	5	&	5	
XWaPfMXQ2QkblgbaSfgehOgheQf		5	5	&	5	
fbUX Nbelai Sf		5	9755			
fhei Q		5	8: 55	&	5	
bginReeRmbhgThimi ju eu					- AEA6EFF	IA8AF.
ciYxy2ez -Tyyy8:5j.	9D5	5	7A9	&		5355(
ciYxy2SxY -Tyyy8:5j.	9D5	6A:	7A9	&981 B		7CB: (
ciYxy2Ou 4cu '-Tyyy8:5j.	9D5	5	7A9	&		5355(
U у у		6	CCDD			: 3CB(
by for which		6A:	A5	&D1D5		A3 8(
f w uNbf Qyw wuNbf		6 6	5 679: D	& 86719:		5355(C377(
euw '2e z		6	5	807.8		5355(
euw '2S xY		6	68895	868189		C3C5(
euw ' 20u		6	5	8		5355(
fuy gu		6	5	8		5355(
U u u Xuv		6	66: AD	&661 A	D	B3A8(
fyRyw'		: 65	6:	&B1A:	5	: 35: (
fySux '		5	76BC5	&	5	5355(
e zcuw4eyu		6	5	&	5	5355(
Nx'ey u 2a Uwxyx		5	5	&		5355(
TuYuey u2a Uwxyx		5	5	&		5355(
cy '1U yw 1U yw yw		6	CCDD			: 3CB(
NxO 'yw		6	D97D			A377(
b y yux		6	67D77	&671D7		C3 8(
C Z		6	67D77	&671D7	/	C3 8(
UVoVehiVkhoVkaVRURgUikhWVIIbhgReWVVI					- D6FAC	B8GG.
cebOheQYQagYMaMSQYQag2b y eyyyu y4c w y y Yuu'y	У			8		
cebOheQYQagYMaMSQYQag2Py '4N x cuwu'y		_		&81BC		
ceb OheQYQagYMaSQYQag2h c ywgy Pyy u - yw yw	1 wy	lux uzz.		895		
QaStal QQetal S2f w uM y y				& &		
QaSbalQQebalS2f w uYxzwu - wxyx. QaSbalQQebalS2O				& &		
ey v uvyQ y y				896		
ey v uvye y y				890		
The and a Via Te					- GÆGH	DÆF.
ThgmbgYVgTs bjaQe\$fcebVQOgObagbalSQaOl				&B1 B		Dœr.
n a desi cen idad ana da a				OLD [D		

PROJ: Community Resource Center LOC.: 1651 Jefferson Parkway TITLE: Groundmounted 30-Year Energy Output Calcs

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

DC Nameplate Capacity Year 1 Generation Projection (MWH)

\$0

\$22,961

\$37,038

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

Energy Gene	ration Schedu	ule (Based on P	redict	ed Los	i) (i			Potential R	levenue Valu	le		1	Sim	plified Cash Flow I	Projection	
							Energy		Estimated							
						Utility	Savings	Utility	Potential			Cash				
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Operation	Calendar	Annual Energy	/	1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
1	2021	99,130	kWh	100%	18.18%	\$0.0938	\$9,301	\$11,451	\$648	\$0	\$9,949	(\$48,848)	(\$324)	(\$340)	(\$39,563)	(\$39,563)
2	2022	98,337	kWh	99%	18.03%	\$0.0962	\$9,457	\$11,737	\$664	ŝo	\$10.121	(\$15,597)	(\$330)	(\$347)	(\$6,152)	(\$45,715)
3	2023	97,550	kWh	98%	17.89%	\$0.0986	\$9,616	\$12,031	\$681	\$0	\$10,296	(\$15,597)	(\$337)	(\$354)	(\$5,990)	(\$51,706)
4	2024	96,770	kWh	98%	17.75%	\$0.1010	\$9,777	\$12,331	\$698	\$0	\$10,475	(\$15,597)	(\$343)	(\$361)	(\$5,826)	(\$57,531)
5	2025	95,996	kWh	97%	17.60%	\$0.1036	\$9,942	\$12,640	\$715	\$0	\$10,657	(\$15,597)	(\$350)	(\$368)	(\$5,658)	(\$63,189)
6	2026	95,228	kWh	96%	17.46%	\$0.1062	\$10,109	\$12,956	\$733	\$0	\$10,842	(\$15,597)	(\$357)	(\$375)	(\$5,487)	(\$68,677)
7	2027	94,466	kWh	95%	17.32%	\$0.1088	\$10,278	\$13,280	\$751	\$0	\$11,030	(\$15,597)	(\$364)	(\$383)	(\$5,314)	(\$73,991)
8	2028	93,710	kWh	95%	17.19%	\$0.1115	\$10,451	\$13.612	\$770	\$0	\$11,221	(\$15,597)	(\$372)	(\$390)	(\$5,137)	(\$79,128)
9	2029	92,961	kWh	94%	17.05%	\$0.1143	\$10.627	\$13,952	\$789	ŝo	\$11,416	(\$15,597)	(\$379)	(\$398)	(\$4,958)	(\$84,086)
10	2030	92,217	kWh	93%	16.91%	\$0.1172	\$10,805	\$14,301	\$809	ŝo	\$11,614	(\$15,597)	(\$387)	(\$406)	(\$4,775)	(\$88,861)
11	2031	91,479	kWh	92%	16.78%	\$0.1201	\$10,987	\$14,658	\$829		\$11,816	\$0	(\$394)	(\$414)	\$11,007	(\$77,854)
12	2032	90,747	kWh	92%	16.64%	\$0.1231	\$11,171	\$15,025	\$850		\$12,021	\$0	(\$402)	(\$422)	\$11,197	(\$66,657)
13	2033	90,021	kWh	91%	16.51%	\$0.1262	\$11,359	\$15,400	\$871		\$12,230	\$0	(\$410)	(\$431)	\$11,389	(\$55,268)
14	2034	89,301	kWh	90%	16.38%	\$0.1293	\$11,550	\$15,785	\$893		\$12,443	\$0	(\$419)	(\$440)	\$11,585	(\$43,683)
15	2035	88,587	kWh	89%	16.25%	\$0.1326	\$11,744	\$16,180	\$915		\$12,659	\$0	(\$427)	(\$448)	\$11,784	(\$31,899)
16	2036	87,878	kWh	89%	16.12%	\$0.1359	\$11,941	\$16,584	\$938		\$12,879	\$0	(\$436)	(\$457)	\$11,987	(\$19,913)
17	2037	87,175	kWh	88%	15.99%	\$0.1393	\$12,142	\$16,999	\$962		\$13,104	\$0	(\$444)	(\$466)	\$12,193	(\$7,720)
18	2038	86,478	kWh	87%	15.86%	\$0.1428	\$12,346	\$17,424	\$986		\$13,332	\$0	(\$453)	(\$476)	\$12,403	\$4,683
19	2039	85,786	kWh	87%	15.73%	\$0.1463	\$12,553	\$17,860	\$1,010		\$13,564	\$0	(\$462)	(\$485)	\$12,616	\$17,299
20	2040	85,099	kWh	86%	15.61%	\$0.1500	\$12,764	\$18,306	\$1,036		\$13,800	\$0	(\$471)	(\$10,729)	\$2,600	\$19,899
21	2041	84,419	kWh	85%	15.48%	\$0.1537	\$12,979	\$18,764	\$1,062		\$14,040	\$0	(\$481)	(\$495)	\$13,064	\$32,963
22	2042	83,743	kWh	84%	15.36%	\$0.1576	\$13,197	\$19,233	\$1,088		\$14,285	\$0	(\$490)	(\$505)	\$13,289	\$46,252
23	2043	83,073	kWh	84%	15.23%	\$0.1615	\$13,418	\$19,714	\$1,115		\$14,534	\$0	(\$500)	(\$515)	\$13,518	\$59,770
24	2044	82,409	kWh	83%	15.11%	\$0.1656	\$13,644	\$20,207	\$1,143		\$14,787	\$0	(\$510)	(\$525)	\$13,751	\$73,522
25	2045	81,750	kWh	82%	14.99%	\$0.1697	\$13,873	\$20,712	\$1,172		\$15,045	\$0	(\$520)	(\$536)	\$13,988	\$87,510
26	2046	81,096	kWh	82%	14.87%	\$0.1739	\$14,106	\$21,230	\$1,201		\$15,307	\$0	(\$531)	(\$547)	\$14,230	\$101,740
27	2047	80,447	kWh	81%	14.75%	\$0.1783	\$14,343	\$21,760	\$1,231		\$15,574	\$0	(\$542)	(\$557)	\$14,475	\$116,215
28	2048	79,803	kWh	81%	14.64%	\$0.1827	\$14,584	\$22,304	\$1,262		\$15,846	\$0	(\$552)	(\$569)	\$14,725	\$130,940
29	2049	79,165	kWh	80%	14.52%	\$0.1873	\$14,829	\$22,862	\$1,293		\$16,122	\$0	(\$563)	(\$580)	\$14,979	\$145,919
30	2050	78,531	kWh	79%	14.40%	\$0.1920	\$15,078	\$23,433	\$1,326		\$16,404	\$0	(\$575)	(\$592)	\$15,238	\$161,156
	Assumed	I Percentage of De	emand									COSTS AND F	INANCING			
		Charge Reduc	tion*:	5.66%								Total Installed A	Array Cost (incl. o	contingency, other	\$166,257	
												owner expense		2 <i>I I I I I I I I I I</i>	\$100,237	

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NRE report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: all information perovided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

\$226,255
\$387,412
\$161,156
17.5 Yea
1.71 to 1

\$161,156	
17.5	Ye
1.71	to
2,653,351	k٧
ear 18.18%	
	17.5 1.71 2,653,351

owner expenses) Grants, Rebates, No-Obligation Funds

year)

Total Interest Payments

Operational Expense Allowance (insurance, O+M, 30-

99.1 545.3 65%

Site Solar Feasibility Reports by Building

Memorial Field Pool

Concept Design

The roof configuration of the Pool Building is moderately well suited for a solar array, however, the total capacity available for a rooftop array is approximately 15% of the site's annual electrical consumption.

To meet the site's full annual use an additional ground mounted array is required. The site area to the Northwest of the pool area contains two thermal solar fields reported to paleBLUEdot as being non-functioning. The area occupied by these thermal fields and the site area between is sufficient for a ground mounted pv array meeting 106% of the site's annual electric use, making the site Net Zero electricity.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.39:1 ratio. As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.026 less than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax

Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

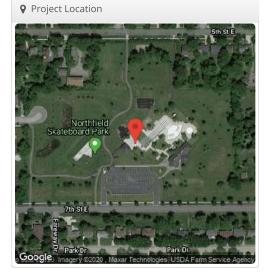
COSTS AND FINANCING

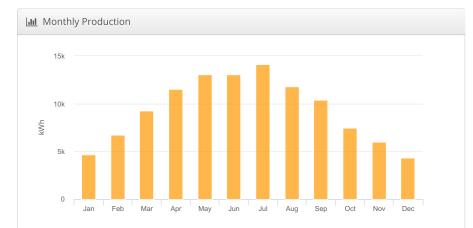
Total Installed Array Cost (incl. contingency, other owner expenses)	\$200,466
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$27,685
Operational Expense Allowance (insurance, O+M, 30- year)	\$37,221
Total Lifetime Project Costs	\$265,371
SAVINGS	
Total Lifetime Project Savings	\$367,544
OUTCOMES	
Net Lifetime Project Costs or Savings	\$102,173

9102,113	
21.7	Years
1.39	to 1.0
3,011,217	kWh
106.53%	
	21.7 1.39 3,011,217

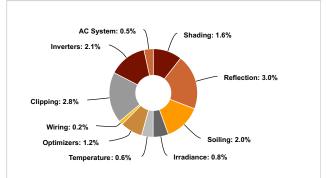
Note, values do not include social cost of carbon avoided by the solar array.

Recommended Site Priority:





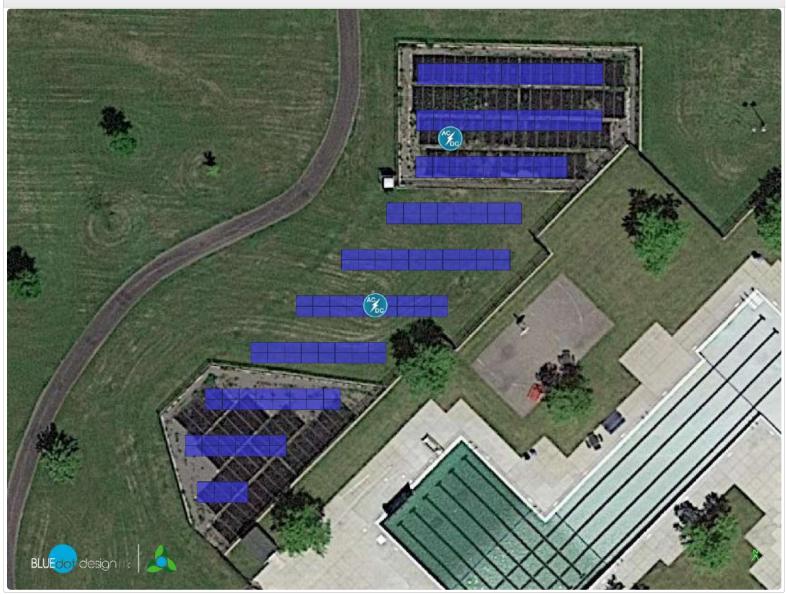
Groundmounted City of Northfield, Memorial Field Pool, 801 7th St E, Northfield, MN


🖋 Report	
Project Name	City of Northfield, Memorial Field Pool
Project Address	801 7th St E, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lul System Metrics									
Design	Groundmounted								
Module DC Nameplate	81.3 kW								
Inverter AC Nameplate	66.6 kW Load Ratio: 1.22								
Annual Production	112.5 MWh								
Performance Ratio	86.7%								
kWh/kWp	1,383.4								
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)								
Simulator Version	edef351a35-38368f3ee3-9050205824- c43eec09b7								

• Sources of System Loss

🖣 Annual P	Production			Condition Set				
	Description	Output	% Delta	Description	Cond	ditior	ו Set	
	Annual Global Horizontal Irradiance	1,394.3		Weather Dataset	TMY,	, 10k	.m gr	
	POA Irradiance	1,595.7	14.4%	Solar Angle Location	Mete	ola	at/l n	
Irradiance	Shaded Irradiance	1,570.8	-1.6%					
(kWh/m ²)	Irradiance after Reflection	1,524.1	-3.0%	Transposition Model	Pere	z Mo	del	
	Irradiance after Soiling	1,493.6	-2.0%	Temperature Model	Sand	lia M	ode	
	Total Collector Irradiance	1,493.5	0.0%		Rack	сТур	е	
	Nameplate	122,184.1		Temperature Model	Eixo	2 2 2 % ° C		
	Output at Irradiance Levels	121,177.7	-0.8%	Parameters				
	Output at Cell Temperature Derate	120,420.8	-0.6%					
	Output After Mismatch	Irradiance Levels 121,177.7 -0.8% Parameters Fixed T uperature Derate 120,420.8 -0.6% Soiling (%) I J F ut After Mismatch 120,420.6 0.0% Soiling (%) I Z Z uptimal DC Output 118,737.3 -0.2% Irradiation Variance Soiling (%) Soiling (%) I Soiling (%) I <td>F</td> <td>IV</td>	F	IV				
Energy (kWb)	Optimizer Output	118,974.7	-1.2%		2	2	2	
(KWII)	Output After Mismat Optimizer Outp Optimal DC Outp Constrained DC Outp	118,737.3	-0.2%	Irradiation Variance	5%			
(kWh)	Constrained DC Output	115,464.6	-2.8%	Cell Temperature Spread	4° C			
	Inverter Output	113,091.6	-2.1%	Madula Binning Danga	-2.5% to 2.5			
	Energy to Grid	112,526.1	-0.5%	Module binning Kange			2.3%	
Temperature I	Metrics			AC System Derate	0.50	%		
	$\frac{ }{ } \\ \int Output at Irradiance Levels 121,177,7 -0.8\% 120,420,8 -0.6\% 120,420,8 -0.6\% 120,420,8 -0.6\% 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120,420,6 120$		ule					
	Avg. Operating Cell Temp		16.9 °C	Module Characterizations				
Simulation Me	trics					l 490 iene)		
		Operating Hours	4673		Device			
		Solved Hours	4673	Component Characterizations	P400) NA	(Sol	
				1400		100		


Condition Set													
Description	Con	dition	Set 1										
Weather Dataset	TMY	TMY, 10km grid (44.45,-93.15), NREL (prospector)											
Solar Angle Location	Mete	Meteo Lat/Lng											
Transposition Model	Perez Model												
Temperature Model	Sandia Model												
	Rack	к Туре	•	a		b			Те	mper	ature	Delta	
Temperature Model Parameters	Fixe	d Tilt		-	3.56	-0.	075		3°	С			
	Flus	h Mo	unt	-	-2.81		-0.0455		0°C				
Soiling (%)	J	F	М	А	Μ	J		J	A	S	0	Ν	D
	2	2	2	2	2	2		2	2	2	2	2	2
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.59	% to 2	.5%										
AC System Derate	0.50	%											
Module Characterizations	Moc	lule			Jpload 3y	led	Characterization						
		1 490 iene)			-olson _abs	n	Spec Sheet Characterization, PAN				n,		
	Dev	ice				Uplo	loaded By			Characterization			
Component Characterizations	P40	0 NA	(SolarE	dge)		Fols	om	Labs		Mfg	g Spec	Sheet	
	SE3	3.3K (SolarEc	lge)		Folsom Labs				Spec Sheet			

🖨 Components								
Component	Name	Count						
Inverters	SE33.3K (SolarEdge)	2 (66.6 kW)						
Strings	10 AWG (Copper)	7 (596.9 ft)						
Optimizers	P400 NA (SolarEdge)	166 (66.4 kW)						
Module	Heliene, 96M 490 (490W)	166 (81.3 kW)						

🛔 Wiring Zor	nes										
Description		Combiner Poles	Sti	ring Size	Stringing	Stringing Strategy					
Wiring Zone		12		16	-25	Along Rac	king				
III Field Segn	nents										
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power		
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	22°	180°	9.8 ft	2x1	83	166	81.3 kW		

Oetailed Layout

Memorial Field Pool 801 7th St E Groundmounted Date

5/8/2020

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Information on Total Production (kWh) **Your Solar Array Your Electric Use** 3.011.217 kWh (from solar bid) (all meters) **Total Electricity Bill Savings** \$367,544 2021 First Year of Operation Xcel Energy Electric Utility Cash Purchase Payback otal Annual Electric Use Allowance for annual expenses and financing costs excluded 81.30 Array Size (kW DC) 105,600 kWh) Total Annual Demand (kW) 490 Watt Rating 252.00 Capital Cost \$200,466 Number of Solar Modules 0 Building Area (Square Feet Grants, Rebates, No-Obligation Funds \$0 Roof) Number of Solar Modules Est % of Elec used betwee 166 65.00% Net Cost \$200,466 Ground) Oam and 3pm Number of Solar Modules Estimated annual electric 0 2.50% Simple Project Payback 16.36 Years (Carport) scalation rate** lectric Use Intensity 66.60 Capacity (kW AC) N/A kWh/SF) Financed Purchase Payback Efficiency Warrantee Level UI as % of National Allowance for annual expenses excluded. Financing costs included 80.00% N/A verage aximum Annual Production 0.80% \$10.695.00 Annual Energy Charge (\$) Financed Capital Cost \$228.151 egradation Rate (%) 112,500 First Year Generation (kWh) \$1,834.00 Annual Demand Charge (\$) Financed Capital Payback 18.62 Years \$191,362.81 Fotal Contractor Bid Fotal Annual Electric Cost \$12,529.00 Financed Array Lifetime Payback Other Owner Expenses (legal, Effective Electric Rate 30 year allowance for annual expenses and financing costs included. \$0.00 \$0.1013 \$/kWh)* tc.) ffective Demand Charge 30 year Operational Expense Allowance \$9,102.95 Owner Contingency (if any) \$7.28 \$37,221 (Ś/kW) (ins/O+M) Average Monthly Demand \$200,465.76 Total Project Budget 21.00 Financed Array Lifetime Cost \$265.371 (kW) \$2.47 Total Cost Per Watt Financed Array Lifetime Payback 21.66 Years **Financial** Information \$0 Net Project Savings (30 year) Information on Array Cash / Down \$40,093.15 Total Electricity Bill Savings Per kWh \$0.1221 ayment **Your Solar Array Operation and** \$0.00 Rebates, Grants, etc. Project Cost Per Solar Per kWh \$0.0881 Maintenance \$0.00 Other no-obligation funds Net Electricity Bill Savings Per kWh \$0.0339 (from solar b nnual O+M Costs (per kW Remaining Array Cost \$160,372.61 Value to Cost Ratio \$4.20 1.39 to 1.0 Requiring Financing DC) 2.00% O+M Annual Escalation Rate nnual Insurance Costs Loan / Bond Interest Rate 3.25% \$4.00 per kW DC) (6 year) verter Replacement Cost Loan/Bond Term \$10,284 10 Assumes year 20) assumed) Effective Electric Rate is calculated based on user entry for Annual Energy Charge and Total Annual Electric Use and may differ from utility reported rate per W/h. * Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/

f Wi HAGIV Y							:H7/ 78:	
h f S 7lioi i l						UT g	т	HA8C
ayEO uy yxyx uybxy zYu' xyuxuy y u u y3O 756B u uuyu'y xyxv yau ueyyuvyQy'Xuvu 1 xzyx w xwyuxywuuyx 7575x u3M z u y u	'wuw	yuyvuyx v w			s	AY	i	AABÆ
Mwy E 6		ть		иуи 365	Xuv 6365		O v yx 6365	
UVITkbinabhg		j		n R	i	т	lnS mhmRe	iVkTVgn:0 mhmRe
RUf bgbimkRmbhg Thiml							-:	:8:.
XQ\$ MX1RUOWX) MPY Latu ge Mgili Q			5	7: 55		85		
XMa P Md Oh til bybba			5	5		85		
XMaPfMXQ2QkblgbalSfgehOgheQf			5	5		85		
fbUXNbela/Sf			5	9755		85		
fhei Q			5	8: 55		85		
bginReeRmbhgThimi ju eu							- AHB6 EI	I:8HB.
сіҮху2е z -Тууу8:5ј.	9D5		5	7A9		85		5355(
ciYxy2SxY-Tyyy8:5j.	9D5		бАА	7A9		&981C97		79 3 C(
ciYxy2Ou 4cu '-Tyyy8:5j.	9D5		5	7A9		85		5355(
Uуу			6	CD98		&CD98		9 3 D6(
b y			бAA	A5		&D1DA5		:39B(
f w u Nbf			6	5		85		5355(
Qyw wu Nbf			6	67: 75		867175		A3CC(
euw '2e z			6	5		85		5355(
euw '2S xY			6	68976		&681976		B3BB(
euw '20u			6 6	5		85 85		5355(
fuygu Uuu Xuv			6	5 66A7A		∞ &661A7A		5355(A38D(
Uuu Xuv fyRyw'			: BB	6:		&C1A::		93B: (
fySux'4Oyu'			6	76BC5		&761BC5		663DA(
e zcu w 4ey u			6	5		&70 DC5 85		5355(
N x 'ey u 2a Uw xyx			5	5		85		5355(
Tu Yu ey u 2a Uw xyx			5	5		85		5355(
cy '10 yw 10 yw yw			6	CD98		&C1098		9306(
NxO 'yw			6	6687A		866187A		A377(
b y yux			6	6: : 76		86:176		C3 8(
C Z			6	6: : 76		86:176		C3 8(
UVoVehiVkhoVkaVRURgUikhWVIIbhgReWVVI							- I6C: D	D8FD.
cebOheQYQagYMaMSQYQag2b y ey yy u y4c w y y Yuu'y y	,					85		
cebOheQYQagYMaMSQYQag2Py '4N x cuwu'y						891:6		
cebOheQYQagYMaSQYQag2h c ywgy Pyy u - yw yw	1 vyy	1uxuzz				&95B		
QaSlalQQelalS2f w uM y y	,					85		
QaSlalQQelalS2f w uYxzwu - w xyx.						85		
Qa S la QQe la S 2O						&81 55		
ey v uvyQ y y						&C9A		
							10.0	DED
Thgmbg YVg Ts						0 D16 F 0	- I 6A: C	DED.
bja Qe\$fcebVQQgObaglalSQaOl						&D1658		

PROJ: Memorial Field Pool LOC: 801 7th St E TITLE: Groundmounted 30-Year Energy Output Calcs

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

0			
y	٤	31.3	

112.5

105.6 65%

08-May-20 DC Nameplate Capacity Year 1 Generation Projection (MWH)

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

							Energy		Estimated							
						Utility	Savings	Utility	Potential			Cash				
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Operation	Calendar	Annual Energy	,	1st		Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Year	Generation		Year	% of Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
1	2021	112,500	kWh		106.53%	\$0.1013	\$6,952	\$1,834	\$1,420	\$0	\$8,372	(\$58,899)	(\$325)	(\$341)	(\$51,194)	(\$51,194)
2	2021	111,600		99%	105.68%	\$0.1013	\$7,126	\$1,880	\$1,456	\$0 \$0	\$8,581	(\$18,806)	(\$332)	(\$348)	(\$10,905)	(\$62,098)
3	2022	110,707	kWh	98%	104.84%	\$0.1058	\$7,304	\$1,927	\$1,492	\$0	\$8,796	(\$18,806)	(\$338)	(\$355)	(\$10,704)	(\$72,802)
4	2023	109,822	kWh	98%	104.00%	\$0.1091	\$7,486	\$1,975	\$1,529	\$0	\$9,016	(\$18,806)	(\$345)	(\$362)	(\$10,498)	(\$83,300)
5	2024	108,943	kWh	97%	103.17%	\$0.1118	\$7,673	\$2,024	\$1,567	\$0	\$9,241	(\$18,806)	(\$352)	(\$370)	(\$10,286)	(\$93,586)
6	2025	108,071	kWh	96%	102.34%	\$0.1118 \$0.1146	\$7,865	\$2,024	\$1,507	50 S0	\$9,472	(\$18,806)	(\$359)	(\$377)	(\$10,280)	(\$103,656)
7	2020	107,207	kWh	95%	102.54%	\$0.1140 \$0.1175	\$8,062	\$2,075	\$1,647	50 S0	\$9,709	(\$18,806)	(\$366)	(\$385)	(\$9,848)	(\$113,504)
8	2028	106,349	kWh	95%	100.71%	\$0.1204	\$8,263	\$2,180	\$1,688	\$0	\$9,951	(\$18,806)	(\$374)	(\$392)	(\$9,620)	(\$123,124)
9	2028	105,498	kWh	94%	99.90%	\$0.1234	\$8,470	\$2,235	\$1,730	\$0 \$0	\$10,200	(\$18,806)	(\$381)	(\$400)	(\$9,387)	(\$132,511)
10	2029	103,458	kWh	93%	99.10%	\$0.1254	\$8,682	\$2,235	\$1,773	\$0 \$0	\$10,455	(\$18,806)	(\$389)	(\$408)	(\$9,147)	(\$141,658)
10	2030	104,034	kWh	92%	98.31%	\$0.1205	\$8,899	\$2,348	\$1,818	<i>5</i> 0	\$10,433	\$0	(\$396)	(\$416)	\$9,904	(\$131,754)
11	2031	102,987	kWh	92%	97.53%	\$0.1290	\$9,855	\$2,340	\$1,863		\$10,985	\$0	(\$404)	(\$425)	\$10,156	(\$121,598)
12	2032	102,587	kWh	91%	96.75%	\$0.1325	\$9,349	\$2,400	\$1,910		\$11,259	\$0	(\$412)	(\$433)	\$10,414	(\$111,185)
13	2033	102,103	kWh	90%	95.97%	\$0.1396	\$9,583	\$2,528	\$1,958		\$11,541	\$0	(\$421)	(\$442)	\$10,678	(\$100,507)
14	2034	100,535	kWh	89%	95.20%	\$0.1330 \$0.1431	\$9,823	\$2,528	\$2,006		\$11,829	\$0	(\$429)	(\$451)	\$10,949	(\$89,557)
15	2035	99,730	kWh	89%	94.44%	\$0.1451	\$10.068		\$2,000		\$12,125	\$0	(\$438)	(\$460)	\$11,228	(\$78,330)
16	2036		kWh	89% 88%	94.44%	\$0.1467 \$0.1503		\$2,656				\$0			\$11,513	
		98,933	kWh	88% 87%	93.69%	\$0.1503 \$0.1541	\$10,320	\$2,723	\$2,108		\$12,428	\$0	(\$446)	(\$469)	\$11,805	(\$66,817)
18 19	2038 2039	98,141	kWh	87%	92.94%	\$0.1541 \$0.1580	\$10,578	\$2,791 \$2.860	\$2,161		\$12,739	\$0	(\$455)	(\$478)	\$12,105	(\$55,012) (\$42,907)
	2039	97,356	kWh	87%	92.19%	\$0.1580 \$0.1619	\$10,842		\$2,215		\$13,057	\$0	(\$464)	(\$488)	\$2,128	
20	2040	96,577	kWh	85%	91.46%	\$0.1619	\$11,113	\$2,932	\$2,270		\$13,384	\$0	(\$474)	(\$10,782)	\$12,737	(\$40,779)
21 22	2041	95,805 95,038	kWh	85%	90.72%	\$0.1660 \$0.1701	\$11,391 \$11.676	\$3,005 \$3,080	\$2,327 \$2,385		\$13,718 \$14,061	\$0	(\$483) (\$493)	(\$497) (\$507)	\$13,061	(\$28,041) (\$14,980)
22	2042	95,038	kWh	84% 84%	89.28%	\$0.1701 \$0.1744	\$11,076	\$3,080 \$3,157	\$2,385 \$2,445		\$14,061	\$0	(\$503)	(\$518)	\$13,392	(\$1,588)
23	2043	93,524	kWh	84% 83%	89.28%	\$0.1744 \$0.1787	\$11,968 \$12,267	\$3,236	\$2,445 \$2,506		\$14,413	\$0	(\$503)	(\$518)	\$13,732	\$12,144
25	2045	92,775	kWh	82%	87.86%	\$0.1832	\$12,574	\$3,317	\$2,568		\$15,142	\$0	(\$523)	(\$538)	\$14,081	\$26,225
26	2046	92,033	kWh	82%	87.15%	\$0.1878	\$12,888	\$3,400	\$2,633		\$15,521	\$0 \$0	(\$534)	(\$549)	\$14,438 \$14,804	\$40,663
27	2047	91,297	kWh	81%	86.46%	\$0.1925	\$13,210	\$3,485	\$2,698		\$15,909		(\$544)	(\$560)		\$55,468
28	2048	90,567	kWh	81%	85.76%	\$0.1973 \$0.2022	\$13,541	\$3,572	\$2,766		\$16,307	\$0 \$0	(\$555)	(\$571)	\$15,180 \$15,565	\$70,648
29	2049 2050	89,842	kWh	80%	85.08%		\$13,879	\$3,662	\$2,835		\$16,714	\$0 \$0	(\$566)	(\$583)		\$86,213
30	2050	89,123	kWh	79%	84.40%	\$0.2073	\$14,226	\$3,753	\$2,906		\$17,132	1 50	(\$578)	(\$594)	\$15,960	\$102,173

Potential Revenue Value

Assumed Percentage of Demand Charge Reduction*: 77.43%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: All information provided is intended as a good-faith order of magnitude estimation of costs and benefit values. Impacts of potential Investment Tax Incentive or depreciation benefits which may be leveraged through 3rd party engagement may not al be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

Total Installed Array Cost (incl. contingency, other owner expenses)	\$200,466	
Grants, Rebates, No-Obligation Funds	\$0	
Total Interest Payments	\$27,685	
Operational Expense Allowance (insurance, O+M, 30- year)	\$37,221	
Total Lifetime Project Costs	\$265,371	
SAVINGS		
Total Lifetime Project Savings	\$367,544	
OUTCOMES		
Net Lifetime Project Costs or Savings	\$102,173	
Total Project Cost Payback (Years)	21.7 Ye	ars
Value to Cost Ratio	1.39 to	1.0
Electricity Production (kWh, 30-year)	3,011,217 kW	/h
Percent of Electricity Usage Covered by Solar (Year	106.53%	

COSTS AND FINANCING

Site Solar Feasibility Reports by Building

Ice Arena

Concept Design

The roof configuration of the Ice Arena building is moderately well suited for solar, with the west/southwest portion of the roof having good solar exposure and little roof obstructions.

The rooftop array is not capable of offsetting all of the electricity used on site. The rooftop array's first year generation is estimated to offset approximately 50% of the site's current reported electricity consumption. To meet the site's full annual use an additional array is required. The site area has insufficient space for an effective ground mounted array, however, "Carport" arrays (array structured over parking lot sections) are possible and capable of meeting 53% more of the site's annual electric use. The combined arrays included in this concept can provide an estimated 103% of the site's total electric use, making the site Net Zero electricity.

Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.22:1 ratio (1.56 for rooftop, 1.01 for ground). As such, this array may provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.025 more than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax

Credit and Depreciation. NOTE: if pursued 3rd OUTCOMES party structure agreement must allow City to retain RECs.

COSTS AND FINANCING (Boofton Array)

COSTS AND FINANCING (ROOITOP Array)		
Total Installed Array Cost (incl. contingency, other owner expenses)	\$481,417	
Grants, Rebates, No-Obligation Funds	\$0	
Total Interest Payments	\$66,485	
Operational Expense Allowance (insurance, O+M, 30- year)	\$104,016	
Total Lifetime Project Costs	\$651,918	
SAVINGS		
Total Lifetime Project Savings	\$1,016,434	
OUTCOMES		
Net Lifetime Project Costs or Savings	\$364,516	
Total Project Cost Payback (Years)	19.2	Years
Value to Cost Ratio	1.56	to 1.0
Electricity Production (kWh, 30-year)	7,885,374	kWh
Percent of Electricity Usage Covered by Solar (Year	50.61%	
COSTS AND FINANCING (Ground Mounted Array)		-
Total Installed Array Cost (incl. contingency, other owner expenses)	\$829,015	Recommended
Grants, Rebates, No-Obligation Funds	\$0	Site Priority:
Total Interest Payments	\$114,489	
Operational Expense Allowance (insurance, O+M, 30-	\$107,679	

Note, values do not include social cost of carbon avoided by the solar array.

Priority 3

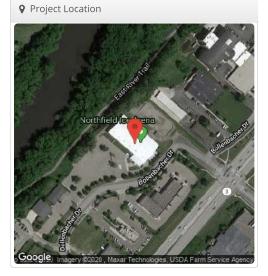
\$1,051,183(Not Recommended)

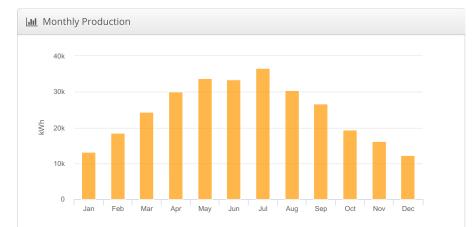
SAVINGS

Total Lifetime Project Costs

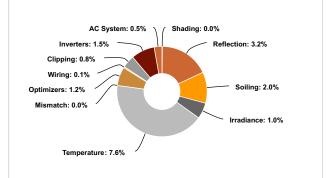
year)

Total Lifetime Project Savings \$1,061,650


Net Lifetime Project Costs or Savings	\$10,467					
Total Project Cost Payback (Years) 29.7						
Value to Cost Ratio 1.01						
Electricity Production (kWh, 30-year)	8,324,342	kWh				
Percent of Electricity Usage Covered by Solar (Year	53.43%					



Design 1 City of Northfield, Ice Arena, 1280 Bollenbacher Drive, Northfield, MN


🖋 Report	
Project Name	City of Northfield, Ice Arena
Project Address	1280 Bollenbacher Drive, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

LIII System Met	rics
Design	Design 1
Module DC Nameplate	227.2 kW
Inverter AC Nameplate	180.0 kW Load Ratio: 1.26
Annual Production	294.6 MWh
Performance Ratio	83.2%
kWh/kWp	1,297.2
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
(Wh/m ²) nergy (Wh) emperature M	POA Irradiance	1,559.5	11.89
Irradiance	Shaded Irradiance	1,559.0	0.0%
(kWh/m²)	Irradiance after Reflection	1,509.1	-3.2%
	Irradiance after Soiling	1,478.9	-2.0%
	Total Collector Irradiance	1,478.9	0.0%
	Nameplate	335,632.0	
Energy (kWh)	Output at Irradiance Levels	332,187.7	-1.09
	Output at Cell Temperature Derate	307,019.0	-7.69
	Output After Mismatch	307,018.7	0.09
	Optimizer Output	303,334.2	-1.29
(((((()))))))))))))))))))))))))))))))))	Optimal DC Output	303,109.0	-0.19
	Constrained DC Output	300,665.3	-0.89
	Inverter Output	296,129.0	-1.5%
	Energy to Grid	294,648.0	-0.5%
Temperature N	letrics		
	Avg. Operating Ambient Temp		10.1 °
	Avg. Operating Cell Temp		24.7 °
Simulation Met	rics		
		Operating Hours	467
		Solved Hours	467

Condition Set															
Description	Cond	Condition Set 1													
Weather Dataset	TMY	TMY, 10km grid (44.45,-93.15), NREL (prospector)													
Solar Angle Location	Mete	eo Lat	/Lng												
Transposition Model	Pere	Perez Model													
Temperature Model	Sanc	lia Mo	del												
Townson the Adda	Rack	к Туре			а			b			Te	mpera	ature D	elta	
Temperature Model Parameters	Fixe	d Tilt			-3.	.56		-0.07	′5		3°	С			
	Flush Mount			-2.	.81		-0.04	155		0°	С				
Soiling (%)	J	F	М		A	Μ		J	J		A	S	0	Ν	D
	2	2	2		2	2		2	2		2	2	2	2	2
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	% to 2.	5%												
AC System Derate	0.50	%													
Module Characterizations	Mod	lule					Up By	loade	d	Characterization					
		l-350 (iene li	Mar18) nc))			Fo La	lsom bs				e_72N ar201	l- 8.pan,	PAN	
Component	Devi	ice						Uploaded By				Cha	racter	ization	
Component Characterizations	P40	0 NA (SolarEc	lg	e)			Folsor	m La	bs		Mfg	g Spec	Sheet	
	SE3) KUS	SolarE	dg	e)			Folsor	m La	bs		Spe	c Shee	et	

© 2020 Folsom Labs

BLUcoo design in 🛛 🍐

Annual Production Report produced by Del McNally

🖨 Compo	🖨 Components									
Component	Name	Count								
Inverters	SE30KUS (SolarEdge)	6 (180.0 kW)								
Strings	10 AWG (Copper)	17 (2,440.9 ft)								
Optimizers	P400 NA (SolarEdge)	649 (259.6 kW)								
Module	Heliene Inc, 72M-350 (Mar18) (350W)	649 (227.2 kW)								

🚠 Wiring Zor	nes										
Description	Co	Combiner Poles			itring Size	Stringing	Stringing Strategy				
Wiring Zone	12			1	8-39	Along Ra	cking				
III Field Segm	nents										
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power		
Field Segment 1	Flush Mount	Portrait (Vertical)	28°	220.878°	0.0 ft	1x1	649	649	227.2 kW		

Oetailed Layout

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Ice Arena 1280 Bollenbacher Drive Rooftop Date 5/9/2020

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	7,885,374	kWh
	1		1	Total Electricity Bill Savings	\$1,016,434	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
227.20	Array Size (kW DC)	582,055	Total Annual Electric Use (kWh)	Allowance for annual expenses and financin	g costs excluded	
350	Watt Rating	1,908.00	Total Annual Demand (kW)	Capital Cost	\$481,417	
649	Number of Solar Modules (Roof)	30,000	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
0	Number of Solar Modules (Ground)	50.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$481,417	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	14.21	Years
180.00	Capacity (kW AC)	19.40	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	194%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$39,192.53	Annual Energy Charge (\$)	Financed Capital Cost	\$547,902	
294,600	First Year Generation (kWh)	\$20,016.00	Annual Demand Charge (\$)	Financed Capital Payback	16.17	Years
\$457,433.59	Total Contractor Bid	\$59,208.53	Total Annual Electric Cost	Financed Array Lifetime Payback		
\$2,500.00	Other Owner Expenses (legal, etc.)	\$0.0673	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and t	financing costs included.	
\$21,483.51	Owner Contingency (if any)	\$10.49	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$104,016	
\$481,417.10	Total Project Budget	159.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$651,918	
\$2.12	Total Cost Per Watt	Financial	-	Financed Array Lifetime Payback	19.24	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$96,283.42	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1289	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.0827	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0462	
\$4.20	Annual O+M Costs (per kW DC)	\$385,133.68	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.56	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$28,741	Inverter Replacement Cost (Assumes year 20)	10	Loan/Bond Term (assumed)			
		reported rate per kWh.	d based on user entry for Annual setric Use and may differ from utility o be based on EIA Data Browser 10			

blxMxt 67C5N xutv'xP x					5D2Yt 275	
еу					P	oleBLUEdotur
bwx yYtz wxNwzx2ftcic xvcuvfxv					txOt tv	77B37
a xEO tx x wxw txb wx yYtz wxt wtx x t t 756B t tt xtzx wxwu 'xat tex x tu xQ xz Xtu t 1		t x ut xw v		ixt 6Sx x t	c xv	7D93A
v wvxtwxvttxw 7575wt3Myt x t				*		
Mv x E 5		Yt: O Uwvx 6365		Xtu O 6365 63	u xw 65	
					fhN	c QeOQa g
P QF Oeld glib a		dt	h M	c xv O	gbgMX	gbgMX
MPY Lal bligeMgluba Obfgf					871 55	53 7(
XQ\$ MX1RUFOMX) MPY Latuf ge/MgUi Q		6	7: 55	&71 55		
XMa P Md Oh t// Log Lob a		5	5	85		
XWaPfMXQ2QkblgbalSfgehOgheQf		5	5	85		
fblXXNbelaiSf		5	9755	85		
fhei Q		5	8: 55	85		
laifgMXXMgUba Obfgf j	t et z				897D1AB5	CD97: (
ciYwx2ey-Txxx8:5j.	8: 5	A9D	6CD	&6771989		7C39D(
ciYwx2SwY-Txxx8:5j.	8: 5	5	6CD	85		5355(
ciYwx2Ot 4ct z-Txxx8:5j.	8: 5	5	6CD	85		5355(
Uxx		6	79DD7	&791DD7		: 307(
b x		A9D	A5	&8C1D95		D35A(
f v tNbf		6	5	85		5355(
Qxv vt Nbf		6	89DCD	&891DCD		C369(
etv z2e y		6	8B9C5	&8B19C5		C387(
etv z 2S wY		6	5	85		5355(
etv z 20t		6	5	85		5355(
ftx gt		6	5	85		5355(
Utt Xtu		6	879D5			B3 A(
f x Rx v z		5	6:	85		5355(
f xStw z		5	76BC5			5355(
e yctv'4ext		6	688A7			8366(
Nwzext 2aUvwxw		5	5			5355(
TtYtex t2a Uvwxw		5	5			5355(
cx z1U xv 1U xv xv		6	79DD7			: 307(
NwO zx v		6	7AB86			A377(
b x'xtw		6	8AA86			C3 8(
су		6	8AA86	&8A1A86		C3 8(
PQIQKbcQebiQeTQMPMaPcebRQffUbaMKRQQf					87BBA8	: 3BB(
cebOheQYQagYMaMSQYQag2b x exxxt x4c v x x Y	t tzx x			85		
cebOheQYQagYMaMSQYQag2Pxz4N wctvtzx				&651B97		
cebOheQYQagYMaSQYQag2h c xvgx Pxx t - xv	xv 1 vx	1twtyy.		&6168A		
QaSlalQQebalS2f v tM x x				&6818A7		
QaSbalQQebalS2f v tYwyvt - vwxw.				85		
Qa S la QQe la S 20				85		
ex u tuxQ x x				&71 79		
Oba glá SQa Ol					&7619C9	939A(
bjaQe\$fcebVQQqObaqlalSQaOl				&7619C9	0.0503	220
				0.0000		

PROJ: Ice Arena LOC: 1280 Bollenbacher Drive TITLE: Rooftop 30-Year Energy Output Calcs

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

1ay-20	
acity	227.2
IWH)	294.6

582.1 50%

09-M DC Nameplate Cap Year 1 Generation Projection (MWH)

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

Year Year Generation Year Use (\$/kWh) Used) (annual) Reduction Payment Bill Savings Payment Insurance Costs Annual Cash Flow 1 2021 294,600 kWh 100% 50.61% \$0.0673 \$19,596 \$20,016 \$5,720 \$0 \$25,317 (\$141,445) (\$909) (\$954) (\$117,992)	orecasted
% of Energy (Value of Demand Demand Xcel Solar Total Investment + Operation Calendar Annual Energy 151 % of Usage Rate Energy Charge Rewards Electricity Loan Forecasted 0+M Forecasted 0+M Forecasted 0+M Forecasted 0+M Forecasted 0+M Solar Total Investment + Year Year Generation Year Use (Shift) Used) (annual) Reduction Payment Bill Savings Payment Insurance Costs Annual Cash Flow 1 2021 294,600 kth 100% Sol.51% Sol.61% So	
Operation Calendar Annual Energy 1st % of Usage Rate Energy Charge Rewards Electricity Loan Forecasted 0+M Forecasted 0Cu Year Year Generation Year Use (\$/kWh) Used) (annual) Reduction Payment Bill Swings Payment Insurance Costs Annual Cash Flow 1 2021 294,600 kWh 100% 50.61% \$0.061% \$20,016 \$57,720 \$0 \$25,317 \$(\$141,445) \$(\$300) \$(\$519,445) \$(\$191,992)	
Year Year Generation Year Use (\$/kWh) Used) (annual) Reduction Payment Bill Savings Payment Insurance Costs Annual Cash Flow 1 2021 294,600 kWh 100% 50.61% \$0.0673 \$19,596 \$20,016 \$5,720 \$0 \$25,317 (\$141,445) (\$909) (\$954) (\$117,992)	
1 2021 294,600 kWh 100% 50.61% \$0.0673 \$19,596 \$20,016 \$5,720 \$0 \$25,317 (\$141,445) (\$909) (\$954) (\$117,992)	Flow
	(\$117,992)
2 2022 292,243 kWh 99% 50.21% \$0.0690 \$20,086 \$20,516 \$5,863 \$0 \$25,949 (\$45,162) (\$927) (\$973) (\$21,113)	(\$139,104)
2 2022 232,243 KWI 378 30.118 00050 320,006 20,310 33,003 50 322,343 (95),001 (3227) (327) (27),	\$159,686)
5 2023 285,505 KWI 508 436,18 50007 320,505 520,853 521,555 56,160 50 527,014 (545,162) (5964) (510,13) (520,125)	(\$179,811)
5 2025 285,285 kWh 97% 49.01% 50.0723 521,204 56,314 50 527,518 (545,162) (596H) (11,013) (519,661)	(\$199,472)
6 2025 283,003 kWh 5/6 45,02 \$21,560 \$22,646 \$6,472 \$0 \$28,032 (\$45,162) (\$1,003) (\$1,054) (\$13,187)	\$218,658)
7 2027 280,739 kWh 35% 48.25% \$0.0762 \$21,922 \$6,634 \$0 522,052 (\$45,162) (\$1,065) (\$1,065) (\$1,075) (\$13,071)	(\$237,362)
8 2028 278,493 kWh 95% 47.85% \$0.0000 \$22,291 \$23,793 \$6,800 \$0 \$29,090 (\$45,162) (\$1,044) (\$1,096) (\$18,212)	\$255,574)
9 2029 276,25 kWh 53% 47.65% 50.0800 522,665 524,388 56,970 \$0 529,635 (545,162) (51,065) (51,118) (517,710)	(\$273,284)
10 2030 274,055 kWh 94% 47.05% 50.0616 \$22,046 \$24,997 \$7,144 \$0 \$30,190 (\$45,162) (\$1,086 (\$1,140) (\$17,149)	\$290,483)
11 2031 271,863 kWh 92% 46.71% \$0.0642 \$23,433 \$25,622 \$7,322 \$30,755 \$0 (\$1,108) (\$1,163) \$28,484	\$261,998)
12 2032 269.688 kWh 92% 46.33% \$0.0883 \$23,827 \$26,263 \$7,506 \$31,332 \$0 (\$1,130) (\$1,186) \$29,016	\$232,983)
13 2033 267,530 kWh 91% 45,96% \$0.0006 \$24,227 \$26,919 \$7,693 \$31,920 \$0 (\$1,153) (\$1,210) \$29,557	\$203,425)
14 2034 265,330 kWh 90% 45,60% \$0.0928 \$24,634 \$27,592 \$7,885 \$32,519 \$0 (\$1,176) (\$1,234) \$30,109	\$173,316)
15 2035 263,267 kWh 89% 45,23% \$0.0951 \$25,048 \$28,282 \$8,083 \$33,130 \$0 (\$1,199) (\$1,259) \$30,672	\$142,644)
16 2036 261,161 kWh 89% 44.87% \$0.0975 \$25,469 \$28,989 \$8,285 \$33,753 \$0 (\$1,223) (\$1,284) \$31,246	\$111,398)
17 2037 259,071 kWh 88% 44.51% \$0.1000 \$25,896 \$29,714 \$8,492 \$34,388 \$0 (\$1,248) (\$1,248) (\$1,310) \$31,831	(\$79,567)
18 2038 256,999 kWh 87% 44.15% \$0.1025 \$26,332 \$30,457 \$8,704 \$35,036 \$0 (\$1,273) (\$1,336) \$32,427	(\$47,140)
19 2039 254,943 kWh 87% 43.80% \$0.1050 \$26,774 \$31,218 \$8,922 \$35,696 \$0 (\$1,298) (\$1,363) \$33,035	(\$14,106)
20 2040 252,903 kWh 86% 43,45% \$0.1076 \$27,224 \$31,999 \$9,145 \$36,368 \$0 (\$1,324) (\$30,131) \$4,914	(\$9,192)
21 2041 250,880 kWh 85% 43.10% \$0.1103 \$27,681 \$32,799 \$9,373 \$37,054 \$0 (\$1,350) (\$1,350) \$34,314	\$25,122
22 2042 248,873 kWh 84% 42.76% \$0.1131 \$28,146 \$33,619 \$9,608 \$37,754 \$0 (\$1,377) (\$1,418) \$34,958	\$60,080
23 2043 246,882 kWh 84% 42.42% \$0.1159 \$28,619 \$34,459 \$9,848 \$38,467 \$0 (\$1,405) (\$1,446) \$35,616	\$95,696
24 2044 244,907 kWh 83% 42.08% \$0.1188 \$29,100 \$35,320 \$10,094 \$39,194 \$0 (\$1,433) (\$1,475) \$36,286	\$131,981
25 2045 242,948 kWh 82% 41.74% \$0.1218 \$29,589 \$36,203 \$10,346 \$39,935 \$0 (\$1,462) (\$1,505) \$36,969	\$168,950
26 2046 241,004 kWh 82% 41.41% \$0.1248 \$30,086 \$37,109 \$10,605 \$40,691 \$0 (\$1,491) (\$1,535) \$37,665	\$206,615
27 2047 239,076 kWh 81% 41.07% \$0.1280 \$30,591 \$38,036 \$10,870 \$41,461 \$0 (\$1,521) (\$1,566) \$38,375	\$244,990
28 2048 237,164 kWh 81% 40.75% \$0.1312 \$31,105 \$38,987 \$11,142 \$42,247 \$0 (\$1,551) (\$1,597) \$39,099	\$284,089
29 2049 235,266 kWh 80% 40.42% \$0.1344 \$31,628 \$39,962 \$11,421 \$43,048 \$0 (\$1,582) (\$1,629) \$39,837	\$323,926
30 2050 233,384 kWh 79% 40.10% \$0.1378 \$32,159 \$40,961 \$11,706 \$43,865 \$0 (\$1,614) (\$1,661) \$40,590	\$364,516

Potential Revenue Value

Assumed Percentage of Demand Charge Reduction*: 28.58%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NRE report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: all information perovided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

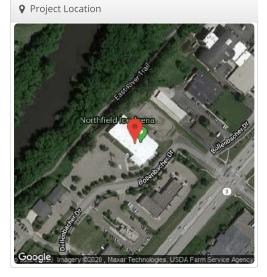
COSTS AND FINANCING

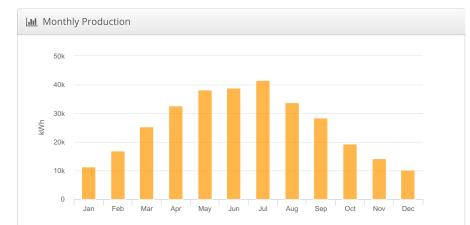
Total Installed Array Cost (incl. contingency, other owner expenses)	\$481,417
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$66,485
Operational Expense Allowance (insurance, O+M, 30- year)	\$104,016
Total Lifetime Project Costs	\$651,918

SAVINGS Total Lifetime Project Savings

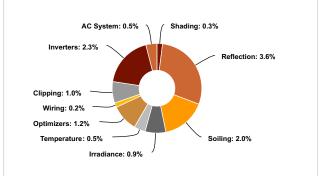
OUTCOMES

Net Lifetime Project Costs or Savings	\$364,516	
Total Project Cost Payback (Years)	19.2	Years
Value to Cost Ratio	1.56	to 1.0
Electricity Production (kWh, 30-year)	7,885,374	kWh
Percent of Electricity Usage Covered by Solar (Year	50.61%	


\$1,016,434



Carport City of Northfield, Ice Arena, 1280 Bollenbacher Drive, Northfield, MN


🖋 Report	
Project Name	City of Northfield, Ice Arena
Project Address	1280 Bollenbacher Drive, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lill System Metrics							
Design	Carport						
Module DC Nameplate	235.2 kW						
Inverter AC Nameplate	187.0 kW Load Ratio: 1.26						
Annual Production	311.0 MWh						
Performance Ratio	88.7%						
kWh/kWp	1,322.2						
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)						
Simulator Version	edef351a35-38368f3ee3-9050205824- c43eec09b7						

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,491.4	7.0%
Irradiance	Shaded Irradiance	1,487.7	-0.3%
(kWh/m²)	Irradiance after Reflection	1,434.2	-3.6%
	Irradiance after Soiling	1,405.5	-2.0%
	Total Collector Irradiance	1,405.5	0.0%
	Nameplate	332,505.3	
Energy (kWh)	Output at Irradiance Levels	329,392.8	-0.9%
	Output at Cell Temperature Derate	327,708.0	-0.5%
	Output After Mismatch	327,707.9	0.0%
	Optimizer Output	323,759.1	-1.2%
	Optimal DC Output	323,077.9	-0.2%
	Constrained DC Output	319,964.6	-1.0%
0,	Inverter Output	312,537.0	-2.3%
	Energy to Grid	310,975.0	-0.5%
Temperature M	etrics		
	Avg. Operating Ambient Temp		10.1 °C
	Avg. Operating Cell Temp		16.6 °C
Simulation Met	rics		
		Operating Hours	4673
		Solved Hours	4673

Condition Set													
Description	Con	Condition Set 1											
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)												
Solar Angle Location	Meteo Lat/Lng												
Transposition Model	Perez Model												
Temperature Model	Sandia Model												
	Rack Type a b Temperature Delta												
Temperature Model Parameters	Fixed Tilt				-3.56		-0.0	75	3	°C			
	Flus	h Mo	unt		-2.81		-0.0	-0.0455		0°C			
Soiling (%)	J	F	М	/	4 N	1	J	J	А	S	0	N	D
	2	2	2	1	2 2	2	2	2	2	2	2	2	2
Irradiation Variance	5%												
Cell Temperature Spread	4° C												
Module Binning Range	-2.59	% to 2	.5%										
AC System Derate	0.50	%											
Module Characterizations	Module Uploaded Characterization												
	96M 490 Folsom Spec Sheet Characteriz (Heliene) Labs PAN								rizatio	٦,			
	Dev	ice			Uplo			Uploaded By		Cha	Characterization		
Component Characterizations	P40	0 NA	(SolarE	dg	ge)		Folso	olsom Labs		Mf	g Spec	Sheet	
	SE1	7K (So	blarEdg	ge)			Folso	m Lal)S	Spe	ec She	et	

Annual Production Report produced by Del McNally

🖨 Components					
Component	Name	Count			
Inverters	SE17K (SolarEdge)	11 (187.0 kW)			
Strings	10 AWG (Copper)	22 (2,789.3 ft)			
Optimizers	P400 NA (SolarEdge)	480 (192.0 kW)			
Module	Heliene, 96M 490 (490W)	480 (235.2 kW)			

🚠 Wiring Zones									
Description	escription Combiner Poles		String Size		Stringing Strategy				
Wiring Zone		12		15	15-22 Along R		acking		
III Field Segments Description Racking Orientation Tilt Azimuth Intrarow Spacing Frame Size Frames Modules Power									
Field Segment 1	Carport	Landscape (Horizontal)	15°	220.396°	0.0 ft	1x1	138	138	67.6 kW
Field Segment 2	Carport	Landscape (Horizontal)	15°	130.327°	0.0 ft	1x1	310	310	151.9 kW
Field Segment 2	Carport	Landscape (Horizontal)	150	128 0320	0.0.ft	1x1	32	32	15.7 kW

Oetailed Layout

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Ice Arena 1280 Bollenbacher Drive Carport Date 5/8/2020

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	8,324,342	kWh	
				Total Electricity Bill Savings	\$1,061,650		
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback			
235.20	Array Size (kW DC) 582,055 Total Annual Electric Use (kWh)			Allowance for annual expenses and financing costs excluded			
490	Watt Rating	1,908.00	Total Annual Demand (kW)	Capital Cost	\$829,015		
0	Number of Solar Modules (Roof)	30,000	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0		
0	Number of Solar Modules (Ground)	50.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$829,015		
480	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	23.43	Years	
187.00	Capacity (kW AC)	19.40	Electric Use Intensity (kWh/SF)	Financed Purchase Payback			
80.00%	Efficiency Warrantee Level (%)	194%	EUI as % of National Average	Allowance for annual expenses excluded. Financing costs included			
0.80%	Maximum Annual Production Degradation Rate (%)	\$39,192.53	Annual Energy Charge (\$)	Financed Capital Cost	\$943,504		
311,000	First Year Generation (kWh)	\$20,016.00	Annual Demand Charge (\$)	Financed Capital Payback	26.66	Years	
\$788,221.84	Total Contractor Bid	\$59,208.53	Total Annual Electric Cost	Financed Array Lifetime Payback	5		
\$2,500.00	Other Owner Expenses (legal, etc.)	\$0.0673	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and financing costs included.			
\$38,293.34	Owner Contingency (if any)	\$10.49	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$107,679		
\$829,015.18	Total Project Budget	159.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$1,051,183		
\$3.52	Total Cost Per Watt	Financial		Financed Array Lifetime Payback	29.70	Years	
		Information		Net Project Savings (30 year)	\$0		
Information on		\$165,803.04	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1275		
Your Solar Array Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.1263		
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0013		
\$4.20	Annual O+M Costs (per kW DC)	\$663,212.15	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.01	to 1.0	
2.00%	O+M Annual Escalation Rate						
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)				
\$29,753	Inverter Replacement Cost (Assumes year 20)	10	Loan/Bond Term (assumed)				
		reported rate per kWh.	d based on user entry for Annual ectric Use and may differ from utility o be based on EIA Data Browser 10				

h f S 71 ioi i I un30 up uny up uny	3	bR ABH:SU T							:H77 78:	
7568 u uùyuý xyx ýsůu ueyy kvyQý Xuv u 1 x2yx ' wuw w 2 min t 2 min t </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>UT g</th> <th>т</th> <th>BCE88</th>								UT g	т	BCE88
Mwy I: 5 T b 6.85 6.85 6.85 UV TKB mbg j n R i T m.hmle m.hmle Ruff Big McR.mbg Thint -		756B u uuyu'y xyxv yau ueyyuvyQy'Xuvu 1								CAA8
UVT TkB mbg j n R i T mnRef mhRef RVF UB ginkRmdby, MY UB gendput C 6 7.55 8.71 55		Mwy E 5		т					6365	i MrTVar (
NCS MURIERON() MV 14// 14// 14// 14// 14// 14// 14// 14/		UVITköimbhg		j		n R	i	т		
NCS.MARTREONS() MPY Lutiges/Byblic 6 7:55 87:55 87:55 NAM.P. MADC/SUBJBAS fgehOgheQ 5 5 86 Map F MADC/SUBJBAS fgehOgheQ 5 5 86 fb tart Mabeuts f 5 9755 86 fb tart Mabeuts f 5 87.55 86 fb tart Mabeuts f 5 87.55 86 cl Y x y 26 z - Ty y y 8.51 905 5 7.49 867/1688 643:1 U y y 6 7:CB7 8677.658 643:1 905 5 7.49 8677.4588 643:1 U y y 6 7:CB7 887.05 884 643:1 847.05 65 8677.05 884 O/w wor Noff 6 887.76 888.70 9381 6351<		RUf babimkRmbhog Thiml							- BÆ: :	:80:.
MAR P f MAQ2QE ug Jag S f geh Ogh eCr 5 5 85 fb tri M be Lid S f 5 9755 85 fb i f ReeRning Th I ni j u eu ' - GFE dFG I BBCH. ci Y x y 2 z z -Ty y y 8:5j. 905 5 749 85 3351 ci Y x y 2 z x Y -Ty y y 8:5j. 905 5 749 867 3351 ci Y x y 2 z x Y -Ty y y 8:5j. 905 5 749 867.4B88 68311 U y y 6 7.087 87.1C57 88.02 88.04 68.311 b y 6 5 85 55 88.04 68.311 68.0776 88.076 98.07 quw '1 2 d w xyk 6 8.0776 8.07.057 88.07 98.07 99					6	7: 55		&7155		
fb0tNbeu8f 5 9755 85 fbind 5 8.55 85 lgInReeRning Thini jueu' -GFE6#FG IBSCH. ciYxy25 xY 7yyy8:5j. 905 5 749 85 5351 ciYxy25 xY 7yyy8:5j. 905 5 749 867ABB8 63351 ciYxy20 xu -fyyy8:5j. 905 5 749 867ABB8 63351 Uyy by 905 5 749 867AB8 63351 63551 by 9 5 6 7:037 887C 888C 98351 6 7:355 884 6 5 85 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 6 5351 <					5	5		85		
fheid 5 8:55 85 bjinkeeRmhg Thini ju eu' -GFE&FG IBRCH. ci Y x y 25 xY - Ty y y 8:51. 905 5 749 86 5351 ci Y x y 25 xY - Ty y y 8:51. 905 5 749 867 5351 ci Y x y 25 xY - Ty y y 8:51. 905 95 749 867.1887 880.11 U y y 6 7:037 87.1057 880.11 880.11 880.11 b y 9 6 7:037 87.1057 880.11 880.11 gow wibf 6 5 85 5551 880.11 988.11 euw '25 xY 6 5 85 3551 955.13		XMaPfMXQ2QkblgbalSfgehOgheQf			5	5		85		
tgl m&ceRmbg Thint j u eu' -GFEHFG IBCLL ci Y x y 2e z -Ty y y8:5j. 905 5 7A9 85 5351 ci Y x y 20 x 2u 'Ty y y8:5j. 905 5 7A9 867 5351 ci Y x y 20 x 2u 'Ty y y8:5j. 905 9C5 7A9 867ABB8 633:1 U y y 6 7:CB7 82:CB7 884 f w u Nof 6 8476 884 f w u Nof 6 8476 884 euw '22 z 6 5 86 3551 euw '22 x Y 6 5 86 3551 f y8 w' 6 5 86 3551 f y9u 6 5 86 3551 euw '22 x Y 6 5 86 3551 euw '22 x Y 6 5 86 3551 f y8w' 5 7660 884776 9881 f y8w ' 5 7666 865 3551 f y8w ' 5 5 85 3551 f y8w ' 6 7207		fbUX NbeLaiSf			5	9755		85		
ci Y x y 2e z - Ty y y8:5j. 905 5 7A9 85 535(ci Y x y 25 x Y -Ty y y8:5j. 905 5 7A9 867AB88 683:1 u y y 6 7:CB7 807 884 683:1 984 U y y 6 7:CB7 887 884 683:1 984 f w u Nof 6 5 65 55 789 867AB88 683:1 Qy wo Nof 6 5 65 5 65 5355 884 euw '2E z 6 5 865 5355 988 988 9939 9339 fuy gu 6 5 65 5 65 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 6 5355 5355 5355 5355 5355 5355 5355 5355 5355 5355 5355 5355 5355 5		fhei Q			5	8: 55		85		
ci Y x y 2 z -Ty y y 8:5j. 905 5 7A9 85 535(ci Y x y 2 2 x Y -Ty y y 8:5j. 905 5 7A9 867ABB3 643:(U y y 6 7:CB7 80:7CB5 80:1CB7 88:0(b y 905 6 7:CB7 80:1CB7 88:0(f w u Nbf 6 5 6 5 85 Qi y wu Nbf 6 5 85 535(euw '2 E z 6 5 85 535(euw '2 Du 6 5 85 535(euw '2 S xY 6 5 86 535(euw '2 S xY 6 5 86 535(euw '2 S xY 6 5 86 535(euw '2 S xY 5 6 5 86 535(f y By w' 5 6 5 86 535(f y By w' 5 5 85 535(535(535(535(535(535(535(535(535(535(535		bgimReeRmbhg Thimi	jueu'						- GFE6HFG	I B8CH.
ci Y x y 20u 4u ' Ty y 98:5j. 9D5 9C5 7A9 #67AB88 63:(U y y 6 7:CB7 #7:DB7 #8#CI b y 9C5 A5 #7:C55 #8#Q f w u Nbf 6 5 #5 5555 Qyw wu Nbf 6 84776 #8#CI #8#CI euw ' 2e z 6 5 #5 5555 euw ' 2Du 6 5 #5 5555 U u X Xuv 6 5 #5 5555 f y S ux ' 5 768C5 #5 5555 f y S ux ' 5 5 #5 5555 5555 f y S ux ' 5 5 #5 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 5555 555 55557 <td< td=""><td></td><td></td><td>9D5</td><td></td><td>5</td><td>7A9</td><td></td><td>85</td><td></td><td>5355(</td></td<>			9D5		5	7A9		85		5355(
U y y 6 7:CB7 &7:CB7 &7:CB7 &87C b y 9C5 A5 &7CC55 &88A b y 00 6 5 &5 \$355 Qyw wi Nbf 6 8776 &86A776 9386 Qyw wi Nbf 6 8776 &86A776 9386 Qw wi Nbf 6 5 &5 \$555 euw '22 2 6 5 &5 \$555 euw '20u 6 8659A9 &8659A9 \$9380 f yBy w' 6 5 &5 \$5351 euw '20u 6 88659A9 &9380 U uu Xuw 6 88698 &9380 U uu Xuw 5 5 &5 \$5351 f ySux ' 6 Ar708 &4708 \$3761 <td></td> <td>ciYxy2SxY-Tyyy8:5j.</td> <td>9D5</td> <td></td> <td>5</td> <td>7A9</td> <td></td> <td>85</td> <td></td> <td>5355(</td>		ciYxy2SxY-Tyyy8:5j.	9D5		5	7A9		85		5355(
b y , 9C5 A5 &CC55 \$38A f w u Nof 6 5 &65 \$355 euw '26 z . 6 5 &65 \$355 euw '25 x Y 6 6 5 &65 \$355 euw '20u 6 5 &65 \$355 euw '20u 6 88A77 9 9380 f uy gu 6 5 &65 \$355 u u u Xuv 6 88A89 9339 f y By w ' 6 5 &65 \$355 f y By w ' 5 &6; &85 \$355 f y By w ' 6 \$365 N x ' ey u 2a Uw xyx 5 5 \$65 \$355 c z & 6 7665 \$65 \$355 c y ' 1U yw 1U yw yw 6 77687 \$877687 \$355 c z & 6 87708 \$84708 \$387 DVo Vehi Vk ho Vx DR gU i kh WI I hg Re WM \$6 9809A \$8919AA \$4770 Ceb One Q' gg Y Ma M5Q' Qag 2b y ey yy u y4c wy y Yu u'y y \$6 c z & 6 \$4708 \$84708 \$387 C z & 6 \$4708 \$84708 \$387 C z & 6 \$4708 \$84708 \$387 C b One Q' gg Y Ma M5Q' Qag 2b y ey yy u y4c wy y Yu u'y y \$6 c z & 6 \$4708 \$84708 \$387 C z & 6 \$4708 \$4708 \$44708 \$47			9D5		9C5					6A3 : (
f w u Nb f 6 5 85 5351 Qyw Qyw wu Nb f 6 5 864776 884776 9388 euw '22 2 6 5 85 5351 euw '22 x 6 5 85 5351 euw '20u 6 8657A9 88657A9 93391 fuy gu 6 5 85 5351 U u Xuv 6 88489 8881899 9800 f ySux 5 6 865 5351 U u Xuv 5 768C5 85 5351 f ySux 5 5 85 5351 f ySux 5 5 85 5351 r Yu 9 22 0w 29 3371 n ye u 2 0w 3351 3351 r yu 2 0w 35 5 85 5351										
Qyw wu Nbf 6 8A776 88A776 938(euw ' 2e z 6 5 85 535(euw ' 2Du 6 5 86 535(euw ' 2Du 6 5 86 535(euw ' 2Du 6 8659A9 88679A 9539(fuy gu 6 5 85 535(Uu Xuv 6 88A9 888789 980(f y By w' 5 6: 86 535(f y Sux ' 5 768C5 85 535(n Y u ey u 2a Uw xyx 5 5 86 535(N x ' ey u 2a Uw xyx 5 5 86 535(Tu Yu ey u 2a Uw xyx 5 5 86 535(Tu Yu ey u 2a Uw xyx 6 77:08 880(535(N x ' ey u 2a Uw xyx 5 5 86 538(C z 'U ve W U 2a Uw xyx 6 77:08 6380 638(Nx O 'y w 6 7108 880(638(638(b y yux 6 <td></td>										
euw ' 2e z 6 5 85 535(euw ' 2Du 6 5 86 535(euw ' 2Du 6 8599 8651849 99339(fuy gu 6 85.86 535(535(U uu Xuv 6 88849 980(9335(f yBy w' 5 6: 865 535(f ySux ' 5 768C5 86 535(e zcuw Aey u 5 5 86 535(N x 'ey u 2a Uw xyx 5 5 86 535(Tu Yu ey u 2a Uw xyx 5 5 86 535(Nx O 'y w 6 7CB7 827(EF7 880(NxO 'y w 6 A7D8 8At TD8 C38(c z 6 A7D8 8At TD8 C38(
euw ' 2S x Y 6 5 85 535(euw ' 2Ou 6 8659A9 88657A9 9939(fuy gu 6 5 85 535(fuy uu Xuv 6 88A89 888789 98D(f y By w' 5 6: 86 535(f y By w' 5 6: 86 535(f y Sux ' 5 6: 86 535(e zcu w 4ey u 6 5 85 535(n Y u ey u 2a Uw xyx 5 5 86 535(ru Y u ey u 2a Uw xyx 5 5 86 535(ru Y u ey u 2a Uw xyx 5 5 86 535(ru Y u ey u 2a Uw xyx 5 5 86 535(ru Y u yu 10 yw 10 yw 6 7:087 87:087 88C(NxO 'y w 6 98A9A 898190A A77(b y yux 6 A708 8A:708 G8(cebOheQ' Qag YMa MSQ' Qag 2b y ey yu y 4c wy y Yu u'y y 85 6 A708 cebOheQ'										
euw '2Qu 6 8659A9 86659A9 9539(fuy gu 6 5 85 555(U u u Xuv 6 88A89 8881N89 98D(f yRy w' 5 6: 86 535(f yRy w' 5 76BC5 86 535(f yS ux ' 5 76BC5 86 535(e zcuw 4ey u 6 5 86 535(N x 'ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(ru Yu ey u 2a Uw xyx 5 5 85 535(ru Yu ey u 2a Uw xyx 5 5 85 535(ru Yu ey u 2a Uw xyx 6 7:CB7 877(88C(Nx O 'y w 6 847D8 847D8 38(38(b y yux 6 A7D8 84/TD8 38(38(c z cbOheQ' GagY MaKQ' Gag2D y ey yy u y4c wy y Yu ú'y y 85 65 65 ceOheQ' GagY MaKQ' Gag										
fuy gu 6 5 85 535(U u u Xuv 6 88A89 888489 980(f y By w' 5 6: 85 535(f y Sux ' 5 768C5 85 535(e zcu w 4ey u 6 5 85 535(N x ' ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Cy ''U yw 1U yw yw 6 77:CB7 87:CB7 88(C) Nx O 'y w 6 980A8 89819A 471 b y yux 6 7:CB7 87:CB7 88(C) Nx O 'y w 6 980A 89819A 437 b y yux 6 7:DB 84:TD8 C38(c z 6 A:7D8 84:TD8 C38(ceboheQr Qag YMaKGY Qag2b y ey yu uy4c wy y Yu u'y y 85 6 A:7D8 86 ceboheQr Qag YMaKGY Qag2b y ey yu uy4c wy y Yu u'y u'u u u z 86 86 86 6 Qa Sta Qagta S 2f w u M y y 85 86 86 6										
U uu Xuv 6 88A89 888N89 98D f y Ry w' 5 6: 85 535(f y S ux ' 5 76BC5 85 535(f y S ux ' 5 76BC5 85 535(N x 'ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Cy '1U yw 1U yw yw 6 7.6B7 82: CB7 88C(NxO 'y w 6 98A9A 89BN9A A77(b y yux 6 A7D8 84: VD8 C38(c z 6 A7D8 84: VD8 C38(G sbid Qcbid S 2f w u M y y 85 6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
f y Ry w' 5 6: &5 5:										
f y S ux ' 5 768C5 &s 535(e z cu w 4ey u 6 5 &s 535(N x 'ey u 2a Uw xyx 5 5 &s 535(Tu Y uey u 2a Uw xyx 5 5 &s 535(cy '1U yw 1U yw yw 6 7:CB7 &7:TB7 &BC(Nx O 'y w 6 9BA9A &29BA9A &A77(b y yux 6 A:7D8 &A:7D8 C38(c z 6 A:7D8 &A:7D8 C38(UVoVehi Vk ho Vka VRU Rg U ikh W/I H bg Re W/V 6 A:7D8 &A:7D8 C38(ceb OheQ' Qa g Y Ma MSQ' Qa g2P y ' 4N x cuwu'y \$5 \$6 <td></td>										
e zcuw 4ey u 6 5 85 535(N x 'ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Tu Yu ey u 2a Uw xyx 5 5 85 535(Cy '1U yw 1U yw yw 6 7:CB7 88C(535(Nx O 'y w 6 98A9A 898A9A A77(b y yux 6 A 7D8 8A 7D8 C38(c z 6 A 7D8 8A 7D8 C38(C z 6 A 7D8 8A 7D8 C38(CebOheQ/ Qag YMaMSQ/ Qag 2b y ey yy u y4c wy y Yu d'y y 85 6 A 50598 cebOheQ/ Qag YMaMSQ/ Qag 2b ' A' x cuw u'y 85 6 6 6 Qa Stal Q2etid 5 2f w u M y y 85 85 6 6 Qa Stal Q2etid 5 2f w u M y y 85 85 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
N x 'ey u 2a Uw xyx 5 5 8.5 5355(Tu Yuey u 2a Uw xyx 5 5 8.5 5355(Tu Yuey u 2a Uw xyx 5 5 8.5 5355(Cy '1U yw 1U yw yw 6 7:CB7 887(886() NxO 'yw 6 9BA9A 89B49A A77() b y yux 6 A.7D8 &A.7D8 CB7 c z 6 A.7D8 &A.7D8 CB8CE UVoVehi Vk. hovKa VRU RgU i kh W/I I bh gRe VW/I 6 A.7D8 &A.7D8 CB8CE cebOheQ/Qag YMa MSQ/Qag 2b y ey yy u y4c wy y Yu d'y y 85 CB8CE B8G. cebOheQ/Qag YMa MSQ/Qag 2b, c yw gy y u y4c wy y Yu d'y y 85 CB60598 cebOheQ/Qag YMa SQ/Qag 2b, c yw gy y u - yw yw 1 wy lux u zz 860589A S5 Qa Stal Qaeta S 2f w u M y y 85 Qa Stal Qaeta S 2f w u M y y 85 Qa Stal Qaeta S 2f w u M y y 85										
Tu Yu ey u 2a Uw xyx 5 5 85 5355(cy '1U yw 1U yw yw 6 7:CB7 87:CB7 88C(Nx O 'y w 6 9BA9A 89B19A A77(b y yux 6 97:CB7 87:TCB7 88C(c z 6 9BA9A 89B19A A77(b y yux 6 A:7D8 84:TD8 C38(c z 6 A:7D8 84:TD8 C38(C z 6 A:7D8 84:TD8 C38(C z 6 A:7D8 84:TD8 C38(cebOheQ/QagYMaMSQ/Qag2b y ey yy u y4c w y Y u'u'y y 85 65 C38(cebOheQ/QagYMaMSQ/Qag2Py '4N xcuwu'y 86D1598 86D1598 65 65 cebOheQ/QagYMaSQ/Qag2h c yw gy Py y u - yw yw 1 wy 1u x u zz 865 65 65 QaStalQaetaS 20 82 85 85 65 65 ey v uv yQ y y 87587 87587 87587 6481C D#F8.										
cy '1U yw 1U yw 1U yw wy 88C(Nx O 'y w 6 98A9A &98N9A A77(b y yux 6 A7D8 &47D8 &38C(c z 6 A7D8 &47D8 G38(UVoVehi Vk hoVka VRU RgU ikh VM I hbge VVVI 6 A.7D8 &A7D8 G38(cebOheQ/ Qag Y Ma MS Q/ Qag 2b y ey yy u y4c w y y Yu u'y y 65 - BBCEE BSC. cebOheQ/ Qag Y Ma MS Q/ Qag 2b , c yw gy Py y u - yw yw 1 wy 1u x u zz &6058 - BBCEE BSC. Qa Stal QQetal 5 2f w u M y y										
Nx O 'y w 6 9BA9A & & 9BA9A & & & A77(b y yux 6 A.708 & & A708 G38(c z 6 A.708 & & TD8 G38(CBO heQ/ Gag Y Ma MS Q/ Qag 2b y ey yy u y4c w y y Yu u'y y & & & & & & & & & & & & & & & & & & &										
c z 6 A 708 & 708 & 708 C 38(UVo Veh i Vk ho Vka VRU Rg U i kh W/l I big Re W/VI - BB6CEE B8G: . ceb OheQ/Qag Y Ma MS Q/Qag 2b y ey yy u y4c w y Y u u'y y & 5 . . ceb OheQ/Qag Y Ma MS Q/Qag 2b y ey yy u y4c w y Y u u'y y & 65 . . ceb OheQ/Qag Y Ma MS Q/Qag 2b y ey yy u y4c w y Y u u'y y & 86 . . ceb OheQ/Qag Y Ma MS Q/Qag 2b c yw gy Py y u - yw yw 1 wy lu x u zz & 86 . . Qa Slai Qaelia S 2f w u M y y Qa Slai Qaelia S 20 ey v uv yQ y y . </td <td></td> <td></td> <td></td> <td></td> <td>6</td> <td>9BA9A</td> <td></td> <td>&9B1A9A</td> <td></td> <td></td>					6	9BA9A		&9B1A9A		
UVo Vehi Vk ho Vka VRU Rg U ikh W/I Ibb ge W/V/I - BBCCEE BSC. ceb OheQ/ Qa g Y Ma MS Q/ Qa g 2b y ey y		•			6	A: 7D8		&A: 17D8		C3 8(
cebOheQ/QagYMaMSQ/Qag2b y ey y u y y w y y w y </td <td></td> <td>c z</td> <td></td> <td></td> <td>6</td> <td>A: 7D8</td> <td></td> <td>&A: 17D8</td> <td></td> <td>C3 8(</td>		c z			6	A: 7D8		&A: 17D8		C3 8(
cebOheQ/QagYMaMSQ/Qag2b y ey y u y y w y y w y </td <td></td> <td>UVoVehiVkhoVkaVRURgUikhWVIIbhgReWVVI</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- BB6CEE</td> <td>B8G: .</td>		UVoVehiVkhoVkaVRURgUikhWVIIbhgReWVVI							- BB6CEE	B8G: .
cebOheQ/QagYMaMSQ/Qag2Py'4N x cuwu'y &6D1598 cebOheQ/QagYMaSQ/Qag2h c ywgy Pyy u - yw yw 1 wy 1u x u zz &6158A QaSUaQeUaS2f w u M y y &5 QaSUaQeUaS2O &5 ey v uvyQ y y &7587			Yuu'yy					85		
cebOheQ/QagYMaSQ/Qag2h cywgy Pyy u - ywyw 1 wy lux uzz & 66								&6D169B		
Qa Slai QQelai S 2f w u M y y &5 Qa Slai QQelai S 2f w u Y x zwu - w xyx. &5 Qa Slai QQelai S 2O &5 ey v uvyQ y y &7587			w yw 1 v	wy 1uxu	ZZ.					
Qa Stal QQ⊵tal S 20 &5 ey v uv y Q y y &7587 Thgmfag Y Vg Ts - CH6BIC D&FB.		QaSlalQQebalS2f w uM y y						85		
ey v uvyQ y y &7587 ThgmbgYVgTs - CH6BIC D&FB.		QaSbalQQebalS2f w uYxzwu - wxyx.						85		
ThgmbgYVgTs - CH68IC D&FB.		Qa Slal QQelal S 20								
		ey v uvyQyy						&71587		
b) a very ceb vulg uba guas va ul 88C7D8								000000	- Chebic	D8FB.
		bja Qe\$t ceb VQUg Uba glal S Qa Ol						&8C17D8		

PROJ: Ice Arena LOC: 1280 Bollenbacher Drive TITLE: Carport 30-Year Energy Output Calcs

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

311.0

582.1 50%

DC Nameplate Capacity Year 1 Generation Projection (MWH)

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

Energy Generation Schedule (Based on Predicted Loss)				5)	Potential Revenue Value							Simplified Cash Flow Projection					
							Energy		Estimated								
						Utility	Savings	Utility	Potential			Cash					
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted	
Operation	Calendar	Annual Energy		1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash	
•		Generation		Year	Use			-	Reduction		Bill Savings				Annual Cash Flow	Flow	
Year	Year					(\$/kWh)	Used)	(annual)		Payment		Payment (\$243,573)	Insurance	Costs	(\$219,984)		
1	2021 2022	311,000 308.512	kWh	100% 99%	53.43% 53.00%	\$0.0673 \$0.0690	\$19,596 \$20,086	\$20,016 \$20,516	\$5,922 \$6,070	\$0 \$0	\$25,518 \$26,156	(\$243,573) (\$77,770)	(\$941) (\$960)	(\$988)	(\$53,581)	(\$219,984)	
2	2022		kWh	99% 98%	53.00%	\$0.0690 \$0.0707	\$20,086 \$20,588	\$20,516 \$21,029		\$0 \$0	\$26,156 \$26,810	(\$77,770)		(\$1,008)	(\$52,967)	(\$273,565)	
3	2023	306,044 303,596	kWh	98% 98%	52.58%	\$0.0707			\$6,222 \$6,377	\$0 \$0		(\$77,770)	(\$979)	(\$1,028) (\$1,048)	(\$52,337)	(\$326,532) (\$378,869)	
4	2024		kWh	98% 97%	52.16%	\$0.0725	\$21,103	\$21,555		\$0 \$0	\$27,480		(\$998)				
2	2025	301,167 298.757	kWh	97% 96%	51.74%	\$0.0743 \$0.0762	\$21,631 \$22,171	\$22,094 \$22,646	\$6,536 \$6,700	\$0 \$0	\$28,167 \$28.871	(\$77,770) (\$77,770)	(\$1,018) (\$1,039)	(\$1,069) (\$1,091)	(\$51,691) (\$51,028)	(\$430,560) (\$481,588)	
5	2026	296,367	kWh	96% 95%	51.33%	\$0.0762 \$0.0781	\$22,171 \$22,726	\$22,646	\$6,867	\$0 \$0	\$28,871 \$29,593	(\$77,770)	(\$1,059)	(\$1,112)	(\$50,349)	(\$531,937)	
/	2027		kWh	95% 95%	50.92%	\$0.0781	\$23,294	\$23,212 \$23,793	\$6,867			(\$77,770)		(\$1,112) (\$1,135)	(\$49,653)	(\$581,590)	
9	2028	293,996	kWh	95% 94%	50.51%	\$0.0800	\$23,294 \$23,876	\$23,793 \$24,388	\$7,039 \$7,215	\$0	\$30,333	(\$77,770)	(\$1,081)		(\$48,939)	(\$630,528)	
10	2029	291,644 289.311	kWh	94% 93%	49.71%	\$0.0820 \$0.0841	\$23,876 \$24,329	\$24,388 \$24,997	\$7,215 \$7,395	\$0 \$0	\$31,091 \$31,724	(\$77,770)	(\$1,102) (\$1,124)	(\$1,157) (\$1,181)	(\$48,351)	(\$678,879)	
10	2030	286,997	kWh	93% 92%	49.71%	\$0.0841	\$24,329 \$24,737	\$24,997 \$25,622	\$7,580	ŞU	\$31,724 \$32,318	\$0	(\$1,124)	(\$1,204)	\$29,967	(\$648,912)	
11	2031	286,997	kWh	92% 92%	49.31%	\$0.0862	\$24,737 \$25,153	\$25,622 \$26,263	\$7,580 \$7,770		\$32,918	\$0	(\$1,147)	(\$1,228)	\$30,525	(\$618,388)	
12	2032	282,423		92% 91%	48.91%	\$0.0883	\$25,153	\$26,263	\$7,964		\$32,923 \$33,540	\$0	(\$1,193)	(\$1,253)	\$31,094	(\$587,294)	
13	2033	280,164	kWh	90%	48.13%	\$0.0928	\$26,005	\$27,592	\$8,163		\$34,168	\$0	(\$1,217)	(\$1,278)	\$31,674	(\$555,620)	
14	2034	277,923	kWh	89%	40.15%	\$0.0928 \$0.0951	\$26,003	\$28,282	\$8,367		\$34,809	\$0	(\$1,241)	(\$1,303)	\$32,265	(\$523,356)	
15	2035	275,699	kWh	89%	47.37%	\$0.0931	\$26,886	\$28,989	\$8,576		\$35,463	\$0	(\$1,266)	(\$1,330)	\$32,867	(\$490,489)	
16	2036	273,494	kWh	89% 88%	47.37%	\$0.0975 \$0.1000	\$20,880	\$28,989 \$29,714	\$8,576 \$8,791		\$35,463 \$36,129	\$0		(\$1,356)	\$33,481	(\$457,007)	
17	2037	271,306	kWh	88% 87%	46.61%	\$0.1000 \$0.1025	\$27,338	\$29,714 \$30,457	\$9,011		\$36,808	\$0	(\$1,292) (\$1,317)	(\$1,355)	\$34,107	(\$422,900)	
18	2038	269,135	kWh	87%	46.24%	\$0.1025 \$0.1050	\$27,797 \$28,264	\$30,457 \$31,218	\$9,011		\$36,808	\$0	(\$1,317)	(\$1,411)	\$34,746	(\$388,154)	
20	2039	266,982	kWh	86%	45.87%	\$0.1076	\$28,204	\$31,999	\$9,467		\$38,206	\$0	(\$1,371)	(\$31,192)	\$5,643	(\$382,511)	
20	2040	264,846	kWh	85%	45.50%	\$0.1103	\$29,222	\$32,799	\$9,703		\$38,925	\$0	(\$1,398)	(\$1,439)	\$36,088	(\$346,422)	
21	2041	262,727	kWh	84%	45.14%	\$0.1131	\$29,713	\$33,619	\$9,946		\$39,659	\$0	(\$1,426)	(\$1,468)	\$36,765	(\$309,657)	
22	2042	260,626	kWh	84%	44.78%	\$0.1151 \$0.1159	\$30,212	\$34,459	\$10,195		\$40,407	50	(\$1,454)	(\$1,408)	\$37,455	(\$272,202)	
23	2045	258,541	kWh	83%	44.42%	\$0.1155 \$0.1188	\$30,720	\$35,320	\$10,450		\$41,169	\$0	(\$1,484)	(\$1,527)	\$38,158	(\$234,044)	
25	2044	256,472	kWh	82%	44.06%	\$0.1218	\$31,236	\$36,203	\$10,711		\$41,947	so	(\$1,513)	(\$1,558)	\$38,876	(\$195,168)	
25	2045	254,421	kWh	82%	44.00%	\$0.1218	\$31,761	\$37,109	\$10,979		\$42,739	\$0	(\$1,543)	(\$1,589)	\$39,607	(\$155,561)	
20	2040	252,385	kWh	81%	43.36%	\$0.1248	\$32,294	\$38,036	\$11,253		\$43,547	\$0	(\$1,574)	(\$1,621)	\$40,352	(\$115,209)	
28	2047	250,366	kWh	81%	43.01%	\$0.1312	\$32,837	\$38,987	\$11,534		\$44,371	\$0	(\$1,606)	(\$1,653)	\$41,112	(\$74,097)	
28	2048	248.363	kWh	80%	42.67%	\$0.1344	\$33,388	\$39,962	\$11,823		\$45,211	\$0	(\$1,638)	(\$1,686)	\$41,887	(\$32,210)	
30	2045	246,376	kWh	79%	42.33%	\$0.1378	\$33,949	\$40,961	\$12,118		\$46,067	\$0	(\$1,671)	(\$1,720)	\$42,677	\$10,467	
50	2050	2-30,570			-2.55%		233,545	<i>2-10,0</i> 01	<i>v</i> 12,110		<i>2-10,007</i>	1 20	(\$2,071)	(92,720)	<i>Q</i> -12,077	\$10,407	

Assumed Percentage of Demand Charge Reduction*: 29.58%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NRE report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: all information provided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

COSTS	AND	FINANCING

Total Installed Array Cost (incl. contingency, other owner expenses)	\$829,015
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$114,489
Operational Expense Allowance (insurance, O+M, 30- year)	\$107,679
Total Lifetime Project Costs	\$1,051,183

SAVINGS Total Lifetime Project Savings

Net Lifetime Project Costs or Savings	\$10,467	
Total Project Cost Payback (Years)	29.7	Years
Value to Cost Ratio	1.01 1	to 1.0
Electricity Production (kWh, 30-year)	8,324,342	kWh
Percent of Electricity Usage Covered by Solar (Year	53.43%	

\$1,061,650

Site Solar Feasibility Reports by Building

Maintenance building

Concept Design

The roof configuration of the primary Maintenance building site is well suited for solar PV installation, with good orientation, overall configuration, and moderate rooftop equipment obstruction.

The rooftop arrays supported by the available roof area is capable of offsetting all of the electricity used on site, with a first year generation of over 113% of the site's annual electric use making the site a Net Zero electricity site.

Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.14:1 ratio. As such, this array may provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at the same cost as achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

COSTS AND FINANCING

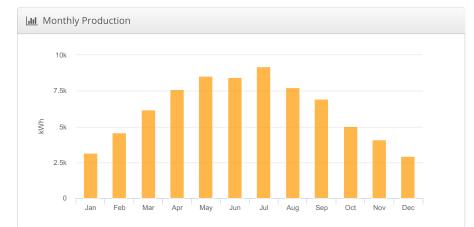
Total Installed Array Cost (incl. contingency, other owner expenses)	\$128,295
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$17,718
Operational Expense Allowance (insurance, O+M, 30- year)	\$25,575
Total Lifetime Project Costs	\$171,589
SAVINGS	
Total Lifetime Project Savings	\$195,505

OUTCOMES

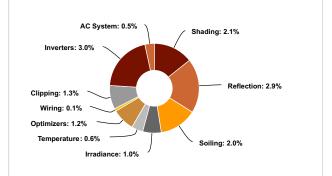
Net Lifetime Project Costs or Savings	\$23,917	
Total Project Cost Payback (Years)	26.3	Years
Value to Cost Ratio	1.14	to 1.0
Electricity Production (kWh, 30-year)	1,991,151	kWh
Percent of Electricity Usage Covered by Solar (Year	113.48%	U

Note, values do not include social cost of carbon avoided by the solar array.

Recommended Site Priority:



Design 1 City of Northfield Maintenance Facility, 1710 Riverview Dr, Northfield, MN


🖋 Report	
Project Name	City of Northfield Maintenance Facility
Project Address	1710 Riverview Dr, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lill System Metrics								
Design	Design 1							
Module DC Nameplate	53.6 kW							
Inverter AC Nameplate	43.2 kW Load Ratio: 1.24							
Annual Production	74.39 MWh							
Performance Ratio	86.1%							
kWh/kWp	1,389.2							
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)							
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751							

• Sources of System Loss

	Description	Output	% Delta			
	Annual Global Horizontal Irradiance	1,394.3				
	POA Irradiance	1,613.7	15.79			
Irradiance	Shaded Irradiance	1,579.7	-2.19			
(kWh/m²)	Irradiance after Reflection	1,534.0	-2.9%			
	Irradiance after Soiling	1,503.3	-2.0%			
	Total Collector Irradiance	1,503.3	0.0%			
	Nameplate	80,425.9				
	Output at Irradiance Levels	79,633.3	-1.09			
	Output at Cell Temperature Derate	79,149.6	-0.69			
_	Output After Mismatch	79,149.5	0.0%			
Energy (kWh)	Optimizer Output	78,199.2	-1.29			
(((((()))))))))))))))))))))))))))))))))	Optimal DC Output	78,089.4	-0.19			
	Constrained DC Output	77,103.9	-1.39			
	Inverter Output	74,764.8	-3.0%			
	Energy to Grid	74,390.9	-0.5%			
Temperature M	etrics					
	Avg. Operating Ambient Temp		10.1 °			
	Avg. Operating Cell Temp		17.0 °			
Simulation Met	ics					
Operating Hours						
Solved Hours						

Condition Set															
Description	Condition Set 1														
Weather Dataset	TMY,	TMY, 10km grid (44.45,-93.15), NREL (prospector)													
Solar Angle Location	Meteo Lat/Lng														
Transposition Model	Perez Model														
Temperature Model	Sanc	lia Mc	del												
	Rack	с Туре			а			b			Те	mper	ature D	Delta	
Temperature Model Parameters	Fixe	d Tilt			-3	.56		-0.07	75		3°C				
	Flush Mount				-2	.81		-0.0455			0°C				
Soiling (%)	J	F	М		A	М		J	J		A	S	0	N	D
	2	2	2		2	2		2	2		2	2	2	2	2
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	6 to 2.	.5%												
AC System Derate	0.50	%													
Module Characterizations	Module						Uploaded By		d	Characterization					
would characterizations	72M-350 (Mar18) (Heliene Inc)							Folsom Labs		Heliene_72M- 350_Mar2018.pan, PAN					
Component	Device						Upl		Uploaded By			Characterization			
Component Characterizations	P40) NA (SolarE	gb	e)		Folsom			Labs Mfg Spec Sheet				:	
	SE14	1.4KU	S (Solai	Έ	dge)			Fols	om l	ab	5	CE	C		

© 2020 Folsom Labs

BLUEGO design i c 🛛 🙏

Annual Production Report produced by Del McNally

🖨 Components							
Component	Name	Count					
Inverters	SE14.4KUS (SolarEdge)	3 (43.2 kW)					
Strings	10 AWG (Copper)	9 (591.6 ft)					
Optimizers	P400 NA (SolarEdge)	153 (61.2 kW)					
Module	Heliene Inc, 72M-350 (Mar18) (350W)	153 (53.6 kW)					

🚠 Wiring Zor	nes									
Description Combiner Poles St				ring Size	Stringing	Stringing Strategy				
Wiring Zone 12			9-17			Along Rac				
III Field Segn	nents									
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power	
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	180°	4.3 ft	1x1	153	153	53.6 kW	

Oetailed Layout

1710 Riverview Dr Rooftop

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Information on Total Production (kWh) **Your Solar Array Your Electric Use** 1.991.151 kWh (from solar bid) (all meters) **Total Electricity Bill Savings** \$195.505 2021 First Year of Operation Xcel Energy Electric Utility Cash Purchase Payback otal Annual Electric Use Allowance for annual expenses and financing costs excluded 53.60 Array Size (kW DC) 65,553 kWh) 350 Watt Rating 252.00 Total Annual Demand (kW) Capital Cost \$128.295 Number of Solar Modules 153 24,960 Building Area (Square Feet Grants, Rebates, No-Obligation Funds \$0 Roof) Number of Solar Modules Est % of Elec used between C 65.00% Net Cost \$128,295 Ground) Oam and 3pm Number of Solar Modules Estimated annual electric 0 2.50% Simple Project Payback 19.69 Years (Carport) scalation rate** lectric Use Intensity 43.20 Capacity (kW AC) 2.63 kWh/SF) Financed Purchase Payback Efficiency Warrantee Level UI as % of National Allowance for annual expenses excluded. Financing costs included 80.00% 26% Average aximum Annual Production 0.80% \$4,768.26 Annual Energy Charge (\$) Financed Capital Cost \$146.013 egradation Rate (%) 74,390 First Year Generation (kWh) \$2,652.00 Annual Demand Charge (\$) Financed Capital Payback 22.41 Years \$122,528.95 Fotal Contractor Bid Fotal Annual Electric Cost \$7,420.26 Financed Array Lifetime Payback Other Owner Expenses (legal, Effective Electric Rate 30 year allowance for annual expenses and financing costs included. \$0.00 \$0.0727 \$/kWh)* tc.) ffective Demand Charge 30 year Operational Expense Allowance \$5,766.36 Owner Contingency (if any) \$10.52 \$25,575 (Ś/kW) (ins/O+M) Average Monthly Demand \$128,295.31 Total Project Budget 21.00 Financed Array Lifetime Cost \$171.589 (kW) \$2.39 Total Cost Per Watt Financed Array Lifetime Payback 26.33 Years **Financial** Information \$0 Net Project Savings (30 year) Information on Array Cash / Down \$25,659.06 Total Electricity Bill Savings Per kWh \$0.0982 ayment **Your Solar Array Operation and** \$0.00 Rebates, Grants, etc. Project Cost Per Solar Per kWh \$0.0862 Maintenance \$0.00 Other no-obligation funds Net Electricity Bill Savings Per kWh \$0.0120 (from solar b nnual O+M Costs (per kW Remaining Array Cost \$102,636.25 Value to Cost Ratio \$4.20 1.14 to 1.0 Requiring Financing DC) 2.00% O+M Annual Escalation Rate nnual Insurance Costs Loan / Bond Interest Rate 3.25% \$4.00 per kW DC) (6 year) verter Replacement Cost Loan/Bond Term \$7,817 10 Assumes year 20) assumed) Effective Electric Rate is calculated based on user entry for Annual Energy Charge and Total Annual Electric Use and may differ from utility reported rate per W/h.
 * Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/

Project Date 5/8/2020 Maintenance Facility

f W AGA:k U k						:H77F 78:	poleBLUEdot
h f S 7lioi i	1				UT g	т	EC8F
ayEO uy yxyx uybxyzYu' xyuxuy y u 756B u uuyu'y xyxv yau ueyyuvyQy'Xuvu w xwyuxywuuyx 7575x u3M z u y u	u y3O 1 xzyx 'v	wyuy uw	vu yx w		s AY	i	GD8D
Mwy E 5		т			(uv j365	O v yx 6365	
UVITkbimbhg			j	n R	і Т	lnS mhmRe	iVkTVgn mhmRe
RUf bgbimkRmbhg Thiml						-:	:8:.
XQS MX1RbfOMX) MPY lal bf ge/Mglii Q			5	7: 55	85	-	
XMa P Md Oh 네네ba			5	5	85		
XMaPfMXQ2Qkb1gbalSfgehOgheQf			5	5	85		
fbUXNbebaSf fheiQl			5 5	9755 8: 55	85 85		
bgimReeRmbhg Thiml	jueu'					- AAE6CBG	н ян.
ciYxy2ez -Tyyy8:5j.	8: 5		6: 8	777	&881D5A		7D 3 95(
ciYxy2SxY-Tyyy8:5j.	8: 5		5	777	85		5355(
ciYxy2Ou 4cu '-Tyyy8:5j.	8: 5		5	777	85		5355(
Uyy by			6 6: 8	ABDB A5	&A1BDB &D16C5		: 3CD(B3DA(
by fwuNof			0.8	5	85		5355(
Qyw wu Nbf			6	D88A	&D188A		C365(
euw '2e z			6	DB8A	&D188A		C399(
euw '2S xY			6	5	85		5355(
euw '2Ou			6	5	85		5355(
fuy gu			6	5	85		5355(
Uuu Xuv fyr Dynys '			6 5	D9AB	&D19AB		C376(
fyRyw' fySux'			5	6: 76BC5	85 85		5365(5365(
e zcuw4eyu			6	86: 5	&816: 5		7388(
N x 'ey u 2a Uwxyx			5	5	85		5355(
TuYueý u2a Uwxyx			5	5	85		5355(
cy '1U yw 1Uyw yw			6	: CDA	& 1CDA		:366(
NxO 'yw			6	B5D7	&B15D7		A35: (
by yux			6	658C8	&6518C8		D365(
C Z			6	658C8	&6518C8		D355(
UVoVehiVk hoVkaVRURgUikhWVIlbhgReWVVI cebOheQ/QagYMaMSQ/Qag2b y ey yy u y4c w y	V VIIIV V				85	- G68: B	E8FA.
ceb OheQYQagYMaMSQrQag2D y ey yy u y4c w y ceb OheQYQagYMaMSQYQag2Py '4N x cuw u'y	y ruuyy				&7 1CC8		
cebOheQYQagYMaSQYQag2h c ywgy Pyy u	- v w vw 1	ww 1u x	u zz		& 69		
QaSlalQQelalS 2f w u M y y	, , ,				8816:5		
QaSlalQQebalS2f w uYxzwu - w xyx.					85		
Qa Slal QQelal S 20					85		
ey v uvyQ y y					&A: :		
Th g mbg Y Vg Ts						- E6GFF	D8DI.
bjaQe\$fcebVQQgObaglalSQaOl					& 18AA		

PROJ: Maintenance Facility LOC: 1710 Riverview Dr TITLE: Rooftop 30-Year Energy Output Calcs

Operation

 $5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\$

SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

Year 1 Generation Projection (MWH) Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

						Energy		Estimated							
					Utility	Savings	Utility	Potential			Cash				
			% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Calendar	Annual Energy		1st		Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Generation		Year	% of Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
2021	74,390	kWh	100%	113.48%	\$0.0727	\$3,099	\$2,652	\$1,354	\$0	\$4,453	(\$37,694)	(\$214)	(\$225)	(\$33,681)	(\$33,681)
2022	73,795	kWh	99%	112.57%	\$0.0746	\$3,177	\$2,718	\$1,388	\$0	\$4,564	(\$12,035)	(\$219)	(\$230)	(\$7,919)	(\$41,600)
2023	73,205	kWh	98%	111.67%	\$0.0764	\$3,256	\$2,786	\$1,422	\$0	\$4,679	(\$12,035)	(\$223)	(\$234)	(\$7,814)	(\$49,414)
2024	72,619	kWh	98%	110.78%	\$0.0783	\$3,338	\$2,856	\$1,458	\$0	\$4,796	(\$12,035)	(\$228)	(\$239)	(\$7,706)	(\$57,120)
2025	72,038	kWh	97%	109.89%	\$0.0803	\$3,421	\$2,927	\$1,494	\$0	\$4,915	(\$12,035)	(\$232)	(\$244)	(\$7,596)	(\$64,716)
2026	71,462	kWh	96%	109.01%	\$0.0823	\$3,507	\$3,000	\$1,532	\$0	\$5,038	(\$12,035)	(\$237)	(\$249)	(\$7,482)	(\$72,199)
2027	70,890	kWh	95%	108.14%	\$0.0844	\$3,594	\$3,076	\$1,570	\$O	\$5,164	(\$12,035)	(\$241)	(\$254)	(\$7,366)	(\$79,565)
2028	70,323	kWh	95%	107.28%	\$0.0865	\$3,684	\$3,152	\$1,609	\$0	\$5,293	(\$12,035)	(\$246)	(\$259)	(\$7,247)	(\$86,812)
2029	69,760	kWh	94%	106.42%	\$0.0886	\$3,776	\$3,231	\$1,649	\$0	\$5,426	(\$12,035)	(\$251)	(\$264)	(\$7,125)	(\$93,936)
2030	69,202	kWh	93%	105.57%	\$0.0908	\$3,871	\$3,312	\$1,691	\$0	\$5,561	(\$12,035)	(\$256)	(\$269)	(\$6,999)	(\$100,935)
2031	68,649	kWh	92%	104.72%	\$0.0931	\$3,967	\$3,395	\$1,733		\$5,700	\$0	(\$261)	(\$274)	\$5,165	(\$95,771)
2032	68,099	kWh	92%	103.88%	\$0.0954	\$4,067	\$3,480	\$1,776		\$5,843	\$0	(\$267)	(\$280)	\$5,296	(\$90,474)
2033	67,555	kWh	91%	103.05%	\$0.0978	\$4,168	\$3,567	\$1,821		\$5,989	\$0	(\$272)	(\$286)	\$5,432	(\$85,043)
2034	67,014	kWh	90%	102.23%	\$0.1003	\$4,273	\$3,656	\$1,866		\$6,139	\$0	(\$277)	(\$291)	\$5,570	(\$79,473)
2035	66,478	kWh	89%	101.41%	\$0.1028	\$4,379	\$3,747	\$1,913		\$6,292	\$0	(\$283)	(\$297)	\$5,712	(\$73,760)
2036	65,946	kWh	89%	100.60%	\$0.1053	\$4,489	\$3,841	\$1,961		\$6,449	\$0	(\$289)	(\$303)	\$5,858	(\$67,902)
2037	65,419	kWh	88%	99.79%	\$0.1080	\$4,601	\$3,937	\$2,010		\$6,611	\$0	(\$294)	(\$309)	\$6,007	(\$61,895)
2038	64,895	kWh	87%	99.00%	\$0.1107	\$4,716	\$4,035	\$2,060		\$6,776	\$0	(\$300)	(\$315)	\$6,161	(\$55,735)
2039	64,376	kWh	87%	98.20%	\$0.1134	\$4,834	\$4,136	\$2,111		\$6,945	\$0	(\$306)	(\$322)	\$6,318	(\$49,417)
2040	63,861	kWh	86%	97.42%	\$0.1163	\$4,955	\$4,240	\$2,164		\$7,119	\$0	(\$312)	(\$8,145)	(\$1,338)	(\$50,755)
2041	63,350	kWh	85%	96.64%	\$0.1192	\$5,079	\$4,346	\$2,218		\$7,297	\$0	(\$319)	(\$328)	\$6,650	(\$44,104)
2042	62,843	kWh	84%	95.87%	\$0.1222	\$5,206	\$4,454	\$2,274		\$7,479	\$0	(\$325)	(\$335)	\$6,820	(\$37,285)
2043	62,341	kWh	84%	95.10%	\$0.1252	\$5,336	\$4,566	\$2,331		\$7,666	\$0	(\$331)	(\$341)	\$6,994	(\$30,291)
2044	61,842	kWh	83%	94.34%	\$0.1284	\$5,469	\$4,680	\$2,389		\$7,858	\$0	(\$338)	(\$348)	\$7,172	(\$23,119)
2045	61,347	kWh	82%	93.58%	\$0.1316	\$5,606	\$4,797	\$2,449		\$8,055	\$0	(\$345)	(\$355)	\$7,355	(\$15,764)
2046	60,856	kWh	82%	92.84%	\$0.1349	\$5,746	\$4,917	\$2,510		\$8,256	\$0	(\$352)	(\$362)	\$7,542	(\$8,222)
2047	60,370	kWh	81%	92.09%	\$0.1382	\$5,890	\$5,040	\$2,573		\$8,462	\$0	(\$359)	(\$369)	\$7,734	(\$488)
2048	59,887	kWh	81%	91.36%	\$0.1417	\$6,037	\$5,166	\$2,637		\$8,674	\$0	(\$366)	(\$377)	\$7,931	\$7,443
2049	59,408	kWh	80%	90.63%	\$0.1452	\$6,188	\$5,295	\$2,703		\$8,891	\$0	(\$373)	(\$384)	\$8,133	\$15,576
2050	58,932	kWh	79%	89.90%	\$0.1489	\$6,343	\$5,427	\$2,770		\$9,113	\$0	(\$381)	(\$392)	\$8,340	\$23,917

Potential Revenue Value

Assumed Percentage of Demand Charge Reduction*: 51.05%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nel.gov/docs/fy17osti/60016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: All information benefit values. Impacts of potential Investment Tax Incentive or depreciation benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

Enormy

owner expenses)	\$128,295	
Grants, Rebates, No-Obligation Funds	\$0	
Total Interest Payments	\$17,718	
Operational Expense Allowance (insurance, O+M, 30- year)	\$25,575	
Total Lifetime Project Costs	\$171,589	
SAVINGS		
Total Lifetime Project Savings	\$195,505	
OUTCOMES		
Net Lifetime Project Costs or Savings	\$23,917	
Total Project Cost Payback (Years)	26.3	Years
Value to Cost Ratio	1.14	to 1.0
		LAND
Electricity Production (kWh, 30-year)	1,991,151	KWVN

COSTS AND FINANCING

Total Installed Array Cost (incl. contingency, other

74.4

65.6 65%

08-May

\$128,295

Site Solar Feasibility Reports by Building

Liquor Store

Concept Design

The roof configuration of the City Hall building is moderately suited for solar PV installation, with good orientation, and configuration, however the building has moderately significant obstructions due to rooftop equipment.

The concept explored in this option is a rooftop solar array meeting the program requirements for the Xcel Energy Solar Rewards program. The Solar Rewards program incentivizes solar installations, first by attributing all energy generated by the solar array to the building's energy consumption on a one-to-one basis (as would occur in a traditional Net Metering interconnection). Secondly, the Solar Rewards program pays the site owner an additional \$0.06 per kWh generated for the first 10 years of operation. Under this arrangement, the site owner receives essentially double compensation for electricity generated by the array for the first 10 years. In exchange, Xcel Energy is allowed to retain the Renewable Energy Credits (the "green attributes") for all power generated by the solar array for the 10 year period. Following the 10 year period the array reverts back to a net metered site (with energy generation offsetting energy consumed on a one-to-one basis)

The array is not capable of offsetting all of the electricity used on site. The array's first year generation is estimated to offset approximately 20% of the site's current reported electricity consumption. The site utilization and tree coverage does not readily support ground mounted arrays while carport arrays would not be cost effective for this site and its energy tariff structure. Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.64:1 ratio. As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.007 less than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

COSTS AND FINANCING

Total Installed Array Cost (incl. contingency, other owner expenses)	\$50,633
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$6,993
Operational Expense Allowance (insurance, O+M, 30- year)	\$8,921
Total Lifetime Project Costs	\$66,546

SAVINGS

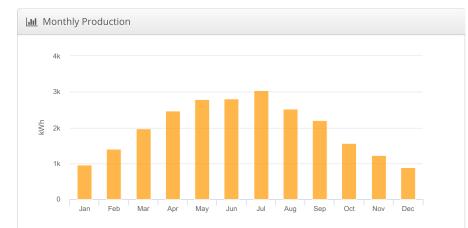
\$109,466

OUTCOMES

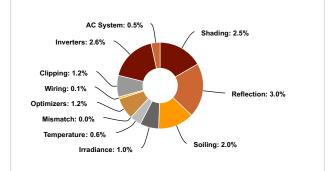
Net Lifetime Project Costs or Savings	\$42,919	
Total Project Cost Payback (Years)	18.2	Years
Value to Cost Ratio	1.64	to 1.0
Electricity Production (kWh, 30-year)	638,646	kWh
Percent of Electricity Usage Covered by Solar (Year	19.91%	

Note, values do not include social cost of carbon avoided by the solar array.

Recommended Site Priority:



Design 1 City of Northfield Liquor Store, 116 Fifth Street West, Northfield, MN

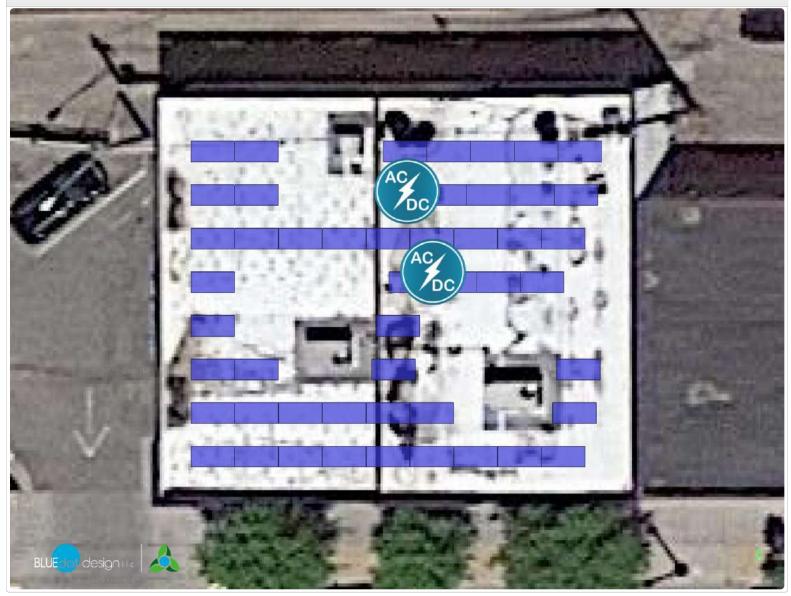

🖋 Report	
Project Name	City of Northfield Liquor Store
Project Address	116 Fifth Street West, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lul System Metrics							
Design	Design 1						
Module DC Nameplate	17.5 kW						
Inverter AC Nameplate	14.0 kW Load Ratio: 1.25						
Annual Production	23.86 MWh						
Performance Ratio	86.1%						
kWh/kWp	1,363.5						
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)						
Simulator Version	82059887e2-94bbd10f05-3ed91e0153- ff78756751						

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,584.5	13.6%
Irradiance	Shaded Irradiance	1,545.3	-2.5%
(kWh/m²)	Irradiance after Reflection	1,498.8	-3.0%
	Irradiance after Soiling	1,468.8	-2.0%
	Total Collector Irradiance	1,469.0	0.0%
	Nameplate	25,683.5	
	Output at Irradiance Levels	25,417.8	-1.09
	Output at Cell Temperature Derate	25,258.3	-0.6%
	Output After Mismatch	25,258.3	0.0%
Energy (kWh)	Optimizer Output	24,955.1	-1.29
(((((()))))))))))))))))))))))))))))))))	Optimal DC Output	24,926.5	-0.19
	Constrained DC Output	24,627.8	-1.29
	Inverter Output	23,980.5	-2.6%
	Energy to Grid	23,860.6	-0.5%
Temperature N	Netrics		
	Avg. Operating Ambient Temp		10.1 °(
	Avg. Operating Cell Temp		16.8 °(
Simulation Me	trics		
	0	perating Hours	4673
		Solved Hours	467

Condition Set															
Description	Condition Set 1														
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)														
Solar Angle Location	Mete	eo Lat	/Lng												
Transposition Model	Pere	z Moc	lel												
Temperature Model	Sanc	lia Mo	del												
	Rack	к Туре			а			b			Те	mpera	ature D	Delta	
Temperature Model Parameters	Fixe	d Tilt			-3	.56		-0.07	75		3°	С			
	Flush Mount					.81		-0.0455		0°0		°C			
Soiling (%)	J	F	М		A	Μ		J	J		A	S	0	N	D
	2	2	2		2	2		2	2		2	2	2	2	2
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	6 to 2.	5%												
AC System Derate	0.50%														
Module Characterizations	Module						Uploaded By		d	Characterization					
	72M-350 (Mar18) (Heliene Inc)						Folsom Labs			Heliene_72 350_Mar20			.72M- 2018.pan, PAN		
Component	Device						Uploaded By			By Characterization					
Characterizations	P40	0 NA (SolarE	lg	e)		Folsom Labs			bs	s Mfg Spec Sheet				
	SE7	K (Sola	arEdge)					Folsor	n La	bs		Spec Sheet			


🖌 Annual Production

Annual Production Report produced by Del McNally

🖨 Components							
Component	Name	Count					
Inverters	SE7K (SolarEdge)	2 (14.0 kW)					
Strings	10 AWG (Copper)	2 (21.8 ft)					
Optimizers	P400 NA (SolarEdge)	50 (20.0 kW)					
Module	Heliene Inc, 72M-350 (Mar18) (350W)	50 (17.5 kW)					

🛔 Wiring Zor	nes								
Description Combiner Poles		String Size			Stringing				
Wiring Zone 12		12	16-35			Along Racking			
III Field Segments									
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	20°	180°	3.4 ft	1x1	50	50	17.5 kW

Oetailed Layout

Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Liquor Store 116 Fifth Street West Rooftop Date 5/9/2020

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	638,646	kWh
				Total Electricity Bill Savings	\$109,466	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
17.50	Array Size (kW DC)	119,812	Total Annual Electric Use (kWh)	Allowance for annual expenses and financin	g costs excluded	
350	Watt Rating	252.00	Total Annual Demand (kW)	Capital Cost	\$50,633	
50	Number of Solar Modules (Roof)	4,400	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
0	Number of Solar Modules (Ground)	60.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$50,633	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	13.88	Years
14.00	Capacity (kW AC)	27.23	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	272%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$12,234.46	Annual Energy Charge (\$)	Financed Capital Cost	\$57,625	
23,860	First Year Generation (kWh)	\$221.00	Annual Demand Charge (\$)	Financed Capital Payback	15.79	Years
\$48,351.27	Total Contractor Bid	\$12,455.46	Total Annual Electric Cost	Financed Array Lifetime Payback	:	
\$0.00	Other Owner Expenses (legal, etc.)	\$0.1021	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and	financing costs included.	
\$2,281.53	Owner Contingency (if any)	\$0.88	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$8,921	
\$50,632.80	Total Project Budget	21.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$66,546	
\$2.89	Total Cost Per Watt	Financial	-	Financed Array Lifetime Payback	18.24	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$10,126.56	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1714	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.1042	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0672	
\$4.20	Annual O+M Costs (per kW DC)	\$40,506.24	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.64	to 1.0
2.00%	O+M Annual Escalation Rate]			
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$3,123	Inverter Replacement Cost	10	Loan/Bond Term			
	,	reported rate per kWh.	ed based on user entry for Annual ectric Use and may differ from utility o be based on EIA Data Browser 10			

Divery YY Liz WN N WAX 2/F t C I C XV C U V FXV PO at x t x0. tv 683 x K0 t xx wwv t xx wvv t xx 0. tx x0. tv 1 xx 55 x xt c xv 780 7566 t t t xt zx wvu vvu 'xa t t ex x tu x0 x x x0 t t 1 wyxw z vt v v v t x 1 x0 xv 1 xx 55 x xt c xv 780 7566 t t t xt zx wvu 'xa t ex x tu x0 x x Xu t 1 wyxw z vt v v v t xu txv 1 xx 55 x xt c xv 780 7566 t t t xt zx 0 Uwxx 685 685 f Nn c3cccog 70 Clubgba 0 t h M c xv 0 gbgM gbgM gbgM MP Y M UgeMgBa Ch fg 5 7.55 85 788 85 5 X2 MINRIGNN / MY L U geMgUC 5 7.55 85 85 5 788 85 5 788 85 5 85 65 788 85 5 788 85 5 788 85 5 788 85 5 788 85 5 788 85 5 788 85 5 788 85 5 35	X f x 66ARy'f xx j x e y						5D2Y1t 275	
2568 t t txt	· · · · · · · ·	/				POat x	∢ txOt tv	6B3
Mx t 5 0 Uwx 635 635 635 635 635 PC (Guidgha d t h M c xv 0 gb gMX gb gMX <thg gmx<="" th=""></thg>	756B t ttxtzx wxwu'xat texxtuxQxzXtut 1							78 D
MY Vid gehdjab obfgi &s 535(X5 Milled OXI, MY Vid gehdjag C 5 7:55 85 X6 Milled OXI, MY Vid gehdjag SigehOgheQi 5 7:55 86 Ymb P MacQ2kilgals SigehOgheQi 5 5 86 Ymb P MacQ2kilgals SigehOgheQi 5 5 86 Ymb P MacQ2kilgals SigehOgheQi 5 5 86 Ymb Y Milled OXI, MY Vid Ugehdjag SigehOgheQi 5 5 86 Ymb P MacQ2kilgals SigehOgheQi 5 5 86 Ymb Y Milled OXI, MY Vid Ugehdjag SigehOgheQi 5 5 788 86 Ymb Y Milled OXI, MY Vid Ugehdjag SigehOgheQi 5 5 788 86 5388 Ymb Y Milled OXI, MY Vid Ugehdjag SigehOgheQi 5 8:5 788 86 5388 Ymb Y Milled OXI, MY Vid SigehOgheQi 8:5 5 788 86 5388 Ymb Y Milled OXI, MY Vid SigehOgheQi 10 8:5 5 788 85 5385 Ymb Y Milled OXI, Milled OXI, MILL 5 6 84899 88109 88109 8810 Qxx vt Nof 6	Mv x E 5		O Uwvx				65	c Qe O Qa g
xx5.xx6R0(xx1) xy7 ub digm/yu C 5 7.55 85 xxx0 P (M02)Qx dig is 5 (geh Oghe Q) 5 5 85 tb Xh De (M02)Qx dig is 5 (geh Oghe Q) 5 5 85 tb Xh De (M02)Qx dig is 5 (geh Oghe Q) 5 5 85 tb Xh De (M02)Qx dig is 5 (geh Oghe Q) 5 5 788 865 tb Xh De (M02)Qx dig is 5 (geh Oghe Q) 1 8:5 5 788 865 ci Y w x 25 y Txx x 8:5 j. 8:5 5 788 865 5381 ci Y w x 20 4t z -Tx x x 8:5 j. 8:5 5 788 865 5381 t x x 5 6 786A 8786A :381 t x x 5 6 786A 8786A :381 t x x 5 6 84855 348 :351 Qxy vt Nbf 6 5 86 :3351 :351 Qxy vt Nbf 6 5 86 :3351 :351 Qxy vt Nbf 6 5	P Qf Oeld glib a		dt	h	м	c xv O	gb gMX	gbgMX
Whe P MitChillights 1 geh OgheQit 5 5 8.5 Whe P MitChillights 1 geh OgheQit 5 5 8.5 March MitQualts 1 geh OgheQit 8.5 5 788 86810A5 Ci Y w x 25 wY -Tx x x 8.5 j. 8.5 5 788 865 5351 Ci Y w x 25 wY -Tx x x 8.5 j. 8.5 5 788 865 5351 U x x 6 7860A 6786A 786A 788 7351 U x x 6 786A 681009 83109 83109 etv z 26 y 6 8A90C 68409 86100 3351 etv z 26 y 6 8A90C 863 5351 U t X Xu 6 9509 6050 63551 U t X Xu 6 5 865 5351	MPY La Li geMgLiba Obfgf						85	5355(
Whe F MWC2/Git/git/s f gehOghe(7) 5 5 8.5 fb for MwC2/Git/git/s f gehOghe(7) 5 9755 8.5 fb for MwC2/Git/git/s f gehOghe(7) jt et z 8.5 8.5 8.5 G i Y w x 2 g y - Tx x x 8.5 j. 8.5 5 788 8.66 CA5 8.88 c i Y w x 2 G *(t z - Tx x x 8.5 j. 8.5 5 788 8.5 355 U x x 6 786.4 8.755 3.84 5.5 788 8.5 355 U x x 6 786.4 8.755 3.84 786.4 .81 <td>XQ\$ MX1Rt/OMX) MPY Lat Lift ge Mglill Q</td> <td></td> <td>5</td> <td>;</td> <td>7: 55</td> <td>85</td> <td></td> <td></td>	XQ\$ MX1Rt/OMX) MPY Lat Lift ge Mglill Q		5	;	7: 55	85		
fbt/the-disf 5 9753 &6 if pheid jt et z &8:55 &8:5 ci Y w x 2e y -Tx x x8:5j. &8:5 5 788 &66 55 ci Y w x 2e y -Tx x x8:5j. &8:5 5 788 &66 55 ci Y w x 2c y -Tx x x8:5j. &8:5 5 788 &65 555 ci Y w x 2c y -Tx x x8:5j. &8:5 5 788 &66 5355 ci Y w x 2c y -Tx x x8:5j. &8:5 5 788 &65 555 U x x 6 786A &786A :355 348 b x 6 8409 &8109 8300 et v z 2e y 6 8409 &8109 8300 et v z 2c w 6 5 &5 555	XMaP MciOhubilogluba							
fheid 5 8:55 85 ufgMXMgbaObfgf jt et z 8:5 5 788 868 DAS 858 DAS cl Y w x 25 wY -Tx x x 8:5j. 8:5 5 788 869 DAS 5380 cl Y w x 25 wY -Tx x x 8:5j. 8:5 5 788 869 DAS 5380 cl Y w x 20 4ct z -Tx x x 8:5j. 8:5 5 788 865 5351 U x x 6 766 A 8786 A :320 413 316 b x :5 A5 88555 .3351 .331 f v t Nof :6 5 85 .3351 Qvv vt Nof :6 8499 8899 .35351 et v 220 :6 84980 .35351 .3551 U t t Xu :6 505 85 .3551 it x gt :6 5 :5 .6 :5 .5 f x St w z :6 5 :6 :5 :5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	XMaPfMXQ2QkbfglaiSfgehOgheQf		5		5	85		
uj główów do bórgi jt et z 86 106 D557(ci Y w x 26 y - Tx x x 8:5j. 8:5 5 788 868 105 5388 ci Y w x 20 4ct z - Tx x x 8:5j. 8:5 5 788 86 5355 L X x 8:5 5 786 86 5355 1388 L X x 8:5 5 786 876A 1355 D x 5 6 786A 8766A 1351 G v x tNof 6 5 85 5355 Q v v tNof 6 84805 88180 6348 etv z 26 y 6 8480 88180 6348 etv z 20 v 6 5 85 5355 f x X v z 5 6 5 85 5355 f x K v z 5 6 5 85 5355 f x K v z 5 6 5 85 5355 f x S v z 6 5 85 5355 5355 f x K v z 5 5 6 55 55 5355								
ci Y w x 2e y -Tx x x8:5j. 8:5 :5 788 &668TA5 &8388 ci Y w x 20; 4tt z-Tx x x8:5j. 8:5 5 788 &663TA5 5355 U x x	fhei Q		5	;	8: 55	85		
ci Y w x 2e y -Tx x x8:5j. 8:5 :5 788 &668TA5 &8388 ci Y w x 20; 4tt z-Tx x x8:5j. 8:5 5 788 &663TA5 5355 U x x		jt et z					89: 1 86	D5367(
ci Y w x 20t 4ct z -Tx x x8:5j. 8:5 5 788 85 535(U x x 6 786A 82786A :301 b x :5 A5 88555 A38(f v t Nof 6 5 85 535(Qxv vt Nof 6 5 85 535(Qvv vt Nof 6 8499 88199 98100 etv z 2e y 6 848C 88198C C544 etv z 2D wf 6 5 85 5355(U t Xtu 6 5 85 5355(1555(U t Xtu 6 5 85 5355(155(U t Xtu 6 570 8670 7374(f xStw z 5 76805 865 5355(f xStw z 5 5 86 5355(f xStw z 5 5 86 5355(f tx gt 0 80707 7974(7974(7974(N w z ex t 2a 0 80707 8670 9377(936(ciYwx2ey -Txxx8:5j.	8: 5	: 5	;	7BB	&681CA5		853BB(
Uxx 6 786A 87876 :30 b x :5 AS 88555 A38 fvtNbf 6 5 85 5355 QxvvtNbf 6 8A99 88499 8300 etvz2ey 6 8A98 88499 6300 etvz2S wY 6 5 85 5355 ftxgt 6 5 85 5355 UttXtu 6 5 85 5355 UttXtu 6 9509 89509 600 fxStwz 5 6 6 5 85 5355 VttXxu 5 5 6 5 5555 5355 eyctV4xt 6 6570 8570 7374 N wzex t2a Uvww 5 5 85 5355 cx <zuv< td=""> 6 678:7 80757 9377 Nw zex t2a 2a Www 5 5 85 5355 cx<zuv< td=""> 6 9987 89987 9257 9365 <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></zuv<></zuv<>								
b x ::5 A5 &8555 A3 F f v t Nbf 6 5 &65 365 3350 et v z 2e y 6 8499 8800 0544 et v z 25 w Y 6 5 85 3550 ft x gt 6 5 &65 365 3550 ft x gt 6 5 &65 365 3550 ft x gt 6 5 &65 365 3550 f x R v z 5 5 &65 3550 f x St w z 5 5 &65 3550 f x St w z 6 9509 &80509 050 7344 N w z ex t 2a U v www 5 5 5 &65 3550 c x z 1U x v 1U x v x v 6 6750 8057 3550 c x z 1U x v 1U x v x v 6 6757 865 3550 c x z 1U x v 1U x v x v 6 7857 865 3550 c y 6 9957 89957 255 PQ Q65Cq5 LGTQP MA Cog 2 x e x x x t x 4c v x x Y t tzx x 6556 c beQ Q gY Ma MSQ Q g2 b x e x x x t x 4c v x x Y t tzx x 86556 c y t v 4 w x 0 86570 3550 c y 1U x v 1U x v x v 1 v x I v x I v t v y 8658 c y t v 4 w x 0 86570 3650 c y 1U x v 1U x v x v 1 v x I v x I v t y 8658 c y t v 4 w x 0 86570 3650 c y 1U x v 1U x v x v 1 v x I v x I v y 1 v x I w y 8658 c y t v 4 w x 0 86570 3650 c y 1U x v 1U x v x v 1 v x I v x I v y 1 v x I w t y 8658 c y t v t x x 0 86570 3650 c y 1U x v 1 y y y t - v y w x 1 v x I w t y 8858 c y t y y y t - v y w x 1 v x I w t y 8858 c y 1 y y y t - v y w x 1 v x I w t y 9857 c y 86570 3650 c x u t u x Q x x 36570 c x u t u x Q x x 36570 c x u t u x Q x x 36570 c x U t x y y y t - v y w x 1 v x I w t y 1 v x I w t y 1 0570 c y 86570 36570 c x U t x y y y t - v y w x 1 v x I w t y 1 v x I w t y 1 0570 c y 10 x y y y t - v y w x 1 v x I w t y 1 v x I w t y 1 0570 c y 10 x y y y t - v y w x 1 v x I w t y 1 v x I w t y 1 0570 c y 10 x y y y t - v y w x 1 y y y t - v y w x 1 y x I w t y y 1 y x I w y y 1 y y y t - y y y y y y y y y y y y y y y		8: 5						
f v t Nbf 6 5 85 335(Qxv vt Nbf 6 8A89 68499 8330(etv z 2e y 6 8A89 68490 6334 etv z 25 wY 6 5 85 535(etv z 25 wY 6 5 85 535(etv z 20t 6 5 85 535(ftx gt 6 5 85 535(U t t Xtu 6 9509 89509 CD(f xStw z 5 6: 86 535(e yct v/4x t 5 76805 85 535(N w zex t 2a Uv ww 5 5 85 535(cx z Ul xv Uv xv 6 607: 8607: 9977(Nwo zxv 6 9987 8987 905(c y 6 9987 8987 905(g Stid Opel A D Ceb ROf fiba MKRQ0f 87876 87876 386(c ebOheQ/ Qg YMa MSQ/ Qg 2P x z 4N wett vzx 8658 86570 905(Q Stid Opel S2 C w t M x x								
Qxv vt Nbf 6 8499 88499 B300 etv z 26 y 6 848C 8848C C54 etv z 25 wY 6 5 85 535(etv z 20t 6 5 85 535(etv z 20t 6 5 85 535(ftx gt 6 5 85 535(Ut t Xtu 6 95C9 805C9 CD(f x St w z 5 6: 85 535(f x St w z 6 657C 857D 734(N w zex t 2a 0 6 67C 857D 734(N w zex t 2a 0 www 5 5 85 535(rt Y tex t 2a 0v www 5 5 85 535(rt Y tex t 2a 0v www 6 78:7 87B7 738(Nw0 zx v 6 99B7 89B7 825(535(c y 6 99B7 89B7 825(535(f y dobed Q1QP MA b60 (2a g2b x ex xx t x4c v x x Yt tzx x 85								
etv z 2e y 6 8ABC &84NBC (3.5) etv z 25 wY 6 5 &6 5 &6 5 \$6 \$535(<t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
etv z 25 wY 6 5 85 535(etv z 20t 6 5 86 535(ftx gt 6 5 86 535(U t t Xtu 6 95C9 895C9 CD(f x St w z 5 6: 86 535(f x St w z 5 768C5 86 535(f x St w z 5 768C5 86 535(f x St w z 5 5 86 535(f x St w z 5 5 86 535(f x St w z 6 67D 8657D 77A(N w z ex t 2a UV www 5 5 86 535(T t Y t ex t 2a UV www 5 5 86 535(c x z1U xv 1U xv xv 6 60D7: 86D7: 977(937(NwO zxv 6 99B7 89B7 DXS(205(205(205(205(205(205(205(205(205(205(205(205(205(205(<								- (
etv z 20t 6 5 &6 5 &6 5 \$5 \$555 U t t Xtu 6 95C9 &905C9 &050 \$555 \$555 \$555 \$555 \$555 \$555 \$555 \$555 \$555 \$555 \$555 \$65 \$5555 \$55555 \$55555 \$								
ft x gt 6 5 65 535(U t t Xtu 6 9509 89509 CDc (f x Kv v z 5 6 85 535(f x S tw z 5 768C5 85 535(e yct v 4ex t 6 657D 8657D 774A N w z ex t 2a Uv wxw 5 5 85 535(C x z1U xv 1U xv xv 6 6070: 86D7: 9977 NwO zxv 6 78:7 87B76 335(c y 6 79:7 899B7 DCS(y 6 79:7 83B(6 9987 899B7 DCS(y 6 79:7 84B 6 9987 899B7 DCS(S5 5 85 S5 S5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
U t t Xtu 6 95C9 & & & & & & & & & & & & & & & & & & &								
f x Rx v z 5 6: &5 555 f x S tw z 5 768C5 &55 555 e yct v' 4ex t 6 657D &667D 774 N w z ex t 2a Uv wxw 5 5 &55 \$55 Tt Y t ex t 2a Uv wxw 5 5 \$5 \$55 \$55 cx z 1U xv 1U xv xv 6 6DD: &60D: \$67D: 9977 NwO zx v 6 78:7 &78:7 \$438 c y 6 9987 &9987 \$055 PQ QXbCQe bi QeTQMP Ms P cebRQf flba MXRQQf \$6 \$9987 \$9987 \$055 cebOheQ' Qag Y Ma MSQ' Qa g2P x z 4N wctv tzx \$6 \$9987 \$8987 \$055 cebOheQ' Qag Y Ma MSQ' Qa g2P x z 4N wctv tzx \$65666 \$6566 \$6566 \$6570 \$6570 Qa Stal Qaela's 2f v v t M x x \$85 \$6570 \$6570 \$6570 \$6570 Qa Stal Qaela's 20 x x \$85 \$6570 \$6570 \$6798 \$6798 Oba gia'S Qa Ol x x \$8798 \$87986 \$87986								
f x S tw z 5 768C5 &5 555 e yct v' 4ex t 6 657C &677D 77A N w z ex t 2a Uv wxw 5 5 &5 \$55 \$55 c x z1U xv 1U xv xv 6 6D7: &607: 937(NwO zxv 6 78.7 &778.7 A38(b x' xtw 6 9987 &9987 0825(c y 6 78.7 &778.7 A38(c b Qt Qt Qt MA P ceb R0ff Uba MKRQ0f 6 9987 &9987 0825(CebOheQ' Qag Y Ma MSQ' Qag 2b x ex x x t x4c v x x Yt tzx x 6 9987 &9987 0855(cebOheQ' Qag Y Ma MSQ' Qag 2b x ex x x t x4c v x x Yt tzx x &5 \$65 \$55 \$65 cebOheQ' Qag Y Ma MSQ' Qag 2b x ex x x t x4c v x x Yt tzx x &66 \$65 \$65 \$65 cebOheQ' Qag Y Ma MSQ' Qag 2b x ex x x t x4c v x x Yt tzx x &66 \$65 \$65 \$65 Qs Sta QQuids 2f v t M x x &865 &8657 \$65 \$67 \$67 \$67 Qs Sta QQuids 20 & x &87 \$87 \$67 \$67								
e yct v' 4ex t 6 6 657D 8657D 73 Å N w z ex t 2a Uv wxw 5 5 5 85 55 85 535(Tt Y t ex t 2a Uv wxw 5 5 5 85 55 85 535(Cx z1U xv 1U xv xv 80 6 607: &607: 937(NwO zx v 6 78:7 &78:7 7478:7 438(b x' xtw 6 9987 &9987 055(C y 6 9987 &9987 055) C y 6 9987 &9987 055(PQ QbcQe bi QETQMP Me De bRQf fUb MXRQQf 82 8 x ex xx t x4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex xx t x 4c v x x Y t tzx x 86596 cebOheQ' Qag Y MaMSQ' Qag 2b x ex x x t x 4c v x x Y t tzx x 86596 ex u tux Q x x 855 Cobag 4 SQe 4 520 ex u tux Q x x 857 Cbag 4 SQE 4 520 ex u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 7 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520 ce x u tux Q x x 857 Cbag 4 SQE 4 520								
N w z ex t 2a Uv wxw 5 5 85 535(Tt Yt ex t 2a Uv wxw 5 5 85 535(535(c x 21U xv 1U xv xv 6 6D7: 86D7: 937(NwO zxv 6 7B:7 87B7 2438(255(255) 255(255) 255(257) 2438(255(257) 2438(255(257) 255(255(255) 255(257) 255(255(257) 255(257) 255(255(257) 255(255(257) 255(255(257) 255(255(257) 255(255(257) 255(255(256) 255(256) 255(256) 255(256) 256(257) 255(256) 256 256 256 256 256 256 256 256 256 256 256 256 257,000 256 256 257,000 256 257,000 256 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
Tt Yt ex t 2a Uv wxw 5 5 85 535(cx z 1U xv 1U xv xv 6 6D7: 86D7: 9977 NwO zxv 6 78:7 878:7 A38(b x'xtw 6 9987 89987 DC5(c y 6 9987 89987 DC5(87'87'8 7 A38(c y 6 9987 89987 DC5(87'87'8 7 85 cebOneQ' Qag Ma MSQ' Qag 2b x ex xx t x4c v x x Yt tzx x 85 cebOneQ' Qag YMa MSQ' Qag 2b x ex xx t x4c v x x Yt tzx x 865 cebOneQ' Qag YMa MSQ' Qag 2b x ex xx t x4c v x x Yt tzx x 865 cebOneQ' Qag YMa MSQ' Qag 2b x ex xx t x4c v x x Yt tzx x 865 Q QXb cQe bi Qe TQM MA P ceb RQF flba MX RQQ' 867 B7 cebOneQ' Qag YMa MSQ' Qag 2b x ex xx t x4c v x x Yt tzx x 865 cebOneQ' Qag YMa MSQ' Qag 2b x ex xx t x4c v x x Yt tzx x 865 Q Xb dQe Va 2g Y Ma SQ' Qag 2b x ex x x t x4c v x x Yt tzx x 865 Q ag Va dQe Va 2g Y x z 4 867 Q ag Va dQe Va 2g Y x z 4 867								
cx z1U xv 1U xv 977(NwO zx 6 78:7 86757: 937(b x'xtw 6 9987 89987 025(c y 6 9987 89987 025(c y 6 9987 89987 025(PCJ QXbcQe bi QeTQVP Ma P ceb RQFf Uba MXRQQF 87876 87876 388(cebOheQ/QagY MaMSQ/Qag2b x ex x x t x 4c v x x Yt tzx x 86596 86586 cebOheQ/QagY MaSQ/Qag2b c xv gx Px x t - xv xv 1 vx 1t wt yy 86558 86570 86570 Qa Sta Quals 2f v t M x x 86570 85798 85798 8798 Oba gta SQa Ol 8798 85798 85798 85798 85798								
b x ' xtw 6 9987 &9987 &9987 DB25(PCJ QXbcQe bi QETQMP Ma P cebRQf f Uba MX RQQf 6 9987 &9987 B25(DB25(PCJ QXbcQe bi QETQMP Ma P cebRQf f Uba MX RQQf cebOheQ/Qa g Y Ma MSQ/Qa g 2b x ex x x t x 4c v x x Yt tzx x &5 &5 \$65666 \$65666 \$65666 \$65666 \$65666 \$65666 \$65670 \$65700 \$65 \$67700 \$67 \$67 \$65 \$67700 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67 \$67	cx z1U xv 1U xv xv		6	;	6D7:	&61D7:		
c y 6 9987 89987 DES(PQ QXb CQe bi QeTQMP Me P ceb RQF Uba MX RQQF 87876 : 388(ceb OheQ' Qa gY Ma M5 Q' Qa g2b x ex x x t x 4c v x x Yt tzx x 85 861596 ceb OheQ' Qa gY Ma M5 Q' Qa g2b x ex x x t x 4c v x x Yt tzx x 865 861596 ceb OheQ' Qa gY Ma M5 Q' Qa g2b x ex x x t x 4c v x x Yt tzx x 861596 86588 ceb OheQ' Qa gY Ma M5 Q' Qa g2b x ex x x t x 4c v x x Yt tzx x 861596 86588 Qa Stal QQeta's 2f v t M x x 86570 857 Qa Stal QQeta's 20 855 857 ex u tu x Q x x 8798	NwO zx v		6	;	7B: 7	&71B:7		A358(
PCj QXbcCe bi QeT QVP Me P ceb RCf f Uba MX RQCf 87767 :386(ceb OheQY Qag Y Ma M5QY Qag 2b x ex x x t x 4c v x x Y t tzx x 85 ceb OheQY Qag Y Ma M5QY Qag 2b x ex x x t x 4c v x x Y t tzx x 86 ceb OheQY Qag Y Ma M5QY Qag 2b c xv y x Y t tzx x 86 ceb OheQY Qag Y Ma SQY Qag 2b c xv y x Px x t - xv xv 1 vx 1t wt yy 8658 Qa Stal QQeta S 2f v t M x x 8657D Qa Stal QQeta S 20 85 ex u tu xQ x x 8798	b x'xtw		6	;	99B7	&919B7		D8C5(
cebOheQ/QagYMaMSQ/Qag2b x ex x x t x4c v x x Yt tzx x &5 cebOheQ/QagYMaMSQ/Qag2b c xvgx Px x t - xv xv 1 vx 1t wt yy. &6596 cebOheQ/QagYMaSQ/Qag2h c xvgx Px x t - xv xv 1 vx 1t wt yy. &858 QaSUaQeUS2f v t M x x &6570 QaSUaQeUS2f0 v t M x x &85 QaSUaQeUS2f0 v t Y wyvt - v wxw. &85 QaSUaQeUS2O &56 ex u tuxQ x x &8798	су		6	i i	99B7	&919B7		D3C5(
cebOheQ/QagYMaMSQ/Qag2b x ex x x t x4c v x x Yt tzx x &5 cebOheQ/QagYMaMSQ/Qag2b c xvgx Px x t - xv xv 1 vx 1t wt yy. &6596 cebOheQ/QagYMaSQ/Qag2h c xvgx Px x t - xv xv 1 vx 1t wt yy. &858 QaSUaQeUS2f v t M x x &6570 QaSUaQeUS2f0 v t M x x &85 QaSUaQeUS2f0 v t Y wyvt - v wxw. &85 QaSUaQeUS2O &56 ex u tuxQ x x &8798	PCIOKbcCebiCeTOVP MaP cebRCffUbaMXRCCf						871 876	:38B(
cebOheQY QagY MaSQY Qag2h c xv gx P xx t - xv xv 1 vx 1t wt yy. &&58 Qa Slai QQeld S 2f v t M x x &&657D &&65 &&56		Yt tzx x				85		•
Qa Slal QQelal S 2f v t M x 86757D Qa Slal QQelal S 2f v t Y wyvt 85 Qa Slal QQelal S 20 85 ex u tu x Q 879B	cebOheQYQagYMaMSQYQag2Pxz4N wctvtzx					861696		
Qa Stal QQe tal S 2 f v t Y wyvt - v wxw. &5 Qa Stal QQe tal S 2 O &5 ex u tuxQ x x &79B Oba gtal SQa Ol &77C7 93 6(cebOheQYQagYMaSQYQag2h c xvgx Pxx t - x	cv xv 1 vx	1twtyy.			&858		
Qa Slai QQe lai S 20 &5 ex u tux Q x x Oba glai S Qa Ol &770C7 93 6(&6157D		
ex u tuxQ x x 879B Obaglá SQa Ol 877C7 93 6(
Ob a glá S Qa Ol 8777C7 93 6(
	ex u tuxQ x x					&79B		
n) a réal centration a departer a gri // C						071767	8/107	93 6(
	uja vezice o vvuguo a gua sva U					&/ VC/		

PROJ: Liquor Store LOC: 116 Fifth Street West TITLE: Rooftop 30-Year Energy Output Calcs SU-Fear Energy Durput Caics Note: Energy generation projections are based on manufacturer efficiency loss warrantee information, applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

				Assumed Ene	Annual Site ergy Use During Sola	Energy Use (MWH) r Production Hours	119 60
evenue Valu	ie		I	Simp	olified Cash Flow I	Projection	
Estimated							
Potential			Cash				
Demand	Xcel Solar	Total	Investment +				Forecasted
Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cas
Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow

						Utility	Savings	Utility	Potential			Cash				
				% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Operation	Calendar	Annual Energy	/	1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Year	Generation		Year	Use	(\$/kWh)	Used)	(annual)	Reduction	Payment	Bill Savings	Payment	Insurance	Costs	Annual Cash Flow	Flow
1	2021	23,860		100%	19.91%	\$0.1021	\$2,436	\$221	\$37	\$1,432	\$3,905	(\$14,876)	(\$70)	(\$74)	(\$11,115)	(\$11,115)
2	2022	23,669	kWh	99%	19.76%	\$0.1047	\$2,477	\$227	\$38	\$1,420	\$3,935	(\$4,750)	(\$71)	(\$75)	(\$961)	(\$12,076)
3	2023	23,480	kWh	98%	19.60%	\$0.1073	\$2,519	\$232	\$39	\$1,409	\$3,966	(\$4,750)	(\$73)	(\$76)	(\$933)	(\$13,009)
4	2024	23,292	kWh	98%	19.44%	\$0.1100	\$2,561	\$238	\$40	\$1,398	\$3,998	(\$4,750)	(\$74)	(\$78)	(\$904)	(\$13,912)
5	2025	23,106	kWh	97%	19.28%	\$0.1127	\$2,604	\$244	\$41	\$1,386	\$4,031	(\$4,750)	(\$76)	(\$80)	(\$874)	(\$14,786)
6	2026	22,921	kWh	96%	19.13%	\$0.1155	\$2,648	\$250	\$42	\$1,375	\$4,065	(\$4,750)	(\$77)	(\$81)	(\$843)	(\$15,630)
7	2027	22,737	kWh	95%	18.98%	\$0.1184	\$2,693	\$256	\$43	\$1,364	\$4,100	(\$4,750)	(\$79)	(\$83)	(\$812)	(\$16,441)
8	2028	22,555	kWh	95%	18.83%	\$0.1214	\$2,738	\$263	\$44	\$1,353	\$4,135	(\$4,750)	(\$80)	(\$84)	(\$780)	(\$17,221)
9	2029	22,375	kWh	94%	18.68%	\$0.1244	\$2,784	\$269	\$45	\$1,343	\$4,171	(\$4,750)	(\$82)	(\$86)	(\$747)	(\$17,968)
10	2030	22,196	kWh	93%	18.53%	\$0.1275	\$2,831	\$276	\$46	\$1,332	\$4,208	(\$4,750)	(\$84)	(\$88)	(\$713)	(\$18,681)
11	2031	22,018	kWh	92%	18.38%	\$0.1307	\$2,878	\$283	\$47		\$2,925	\$0	(\$85)	(\$90)	\$2,750	(\$15,931)
12	2032	21,842	kWh	92%	18.23%	\$0.1340	\$2,926	\$290	\$48		\$2,975	\$0	(\$87)	(\$91)	\$2,796	(\$13,134)
13	2033	21,668	kWh	91%	18.08%	\$0.1373	\$2,976	\$297	\$50		\$3,025	\$0	(\$89)	(\$93)	\$2,843	(\$10,291)
14	2034	21,494	kWh	90%	17.94%	\$0.1408	\$3,026	\$305	\$51		\$3,076	\$0	(\$91)	(\$95)	\$2,891	(\$7,400)
15	2035	21,322	kWh	89%	17.80%	\$0.1443	\$3,076	\$312	\$52		\$3,129	\$0	(\$92)	(\$97)	\$2,939	(\$4,461)
16	2036	21,152	kWh	89%	17.65%	\$0.1479	\$3,128	\$320	\$53		\$3,182	\$0	(\$94)	(\$99)	\$2,988	(\$1,473)
17	2037	20,982	kWh	88%	17.51%	\$0.1516	\$3,181	\$328	\$55		\$3,235	\$0	(\$96)	(\$101)	\$3,038	\$1,566
18	2038	20,815	kWh	87%	17.37%	\$0.1554	\$3,234	\$336	\$56		\$3,290	\$0	(\$98)	(\$103)	\$3,089	\$4,655
19	2039	20,648	kWh	87%	17.23%	\$0.1593	\$3,288	\$345	\$57		\$3,346	\$0	(\$100)	(\$105)	\$3,141	\$7,796
20	2040	20,483	kWh	86%	17.10%	\$0.1632	\$3,344	\$353	\$59		\$3,403	\$0	(\$102)	(\$3,230)	\$71	\$7,866
21	2041	20,319	kWh	85%	16.96%	\$0.1673	\$3,400	\$362	\$60		\$3,460	\$0	(\$104)	(\$107)	\$3,249	\$11,116
22	2042	20,157	kWh	84%	16.82%	\$0.1715	\$3,457	\$371	\$62		\$3,519	\$0	(\$106)	(\$109)	\$3,304	\$14,419
23	2043	19,995	kWh	84%	16.69%	\$0.1758	\$3,515	\$380	\$63		\$3,579	\$0	(\$108)	(\$111)	\$3,359	\$17,778
24	2044	19,835	kWh	83%	16.56%	\$0.1802	\$3,574	\$390	\$65		\$3,639	\$0	(\$110)	(\$114)	\$3,415	\$21,193
25	2045	19,677	kWh	82%	16.42%	\$0.1847	\$3,634	\$400	\$67		\$3,701	\$0	(\$113)	(\$116)	\$3,472	\$24,666
26	2046	19,519	kWh	82%	16.29%	\$0.1893	\$3,695	\$410	\$68		\$3,764	\$0	(\$115)	(\$118)	\$3,530	\$28,196
27	2047	19,363	kWh	81%	16.16%	\$0.1940	\$3,757	\$420	\$70		\$3,827	\$0	(\$117)	(\$121)	\$3,590	\$31,786
28	2048	19,208	kWh	81%	16.03%	\$0.1989	\$3,820	\$430	\$72		\$3,892	\$0	(\$119)	(\$123)	\$3,650	\$35,435
29	2049	19,054	kWh	80%	15.90%	\$0.2039	\$3,885	\$441	\$74		\$3,958	\$0	(\$122)	(\$125)	\$3,711	\$39,146
30	2050	18,902	kWh	79%	15.78%	\$0.2090	\$3,950	\$452	\$75		\$4,025	\$0	(\$124)	(\$128)	\$3,773	\$42,919
	Assumed	Percentage of De	emand									COSTS AND F	NANCING			

Potential Revenue

Utility

Energy

Savings

Utility

Assumed Percentage of Demand Charge Reduction*: 16.67%

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NRE report: https://www.nel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on EIA Data Browser 10 year State history: https://www.eia.gov/electricity/data/browser/ Note: all information provided is intended as a good-faith order of magnitude estimation of costs and benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

Total Installed Array Cost (incl. contingency, other owner expenses)	\$50,633
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$6,993
Operational Expense Allowance (insurance, O+M, 30- year)	\$8,921
Total Lifetime Project Costs	\$66,546
SAVINGS	
Total Lifetime Project Savings	\$109,466

Net Lifetime Project Costs or Savings	\$42,919					
Total Project Cost Payback (Years) 18.2						
Value to Cost Ratio	1.64	to 1.0				
Electricity Production (kWh, 30-year)	638,646	kWh				
Percent of Electricity Usage Covered by Solar (Year	19.91%					

23.9 119.8 60%

DC Nameplate Capacity Year 1 Generation Projection (MWH)

Site Solar Feasibility Reports by Building

Fire and Rescue

Concept Design

The roof configuration of the Fire and Rescue building is well suited for solar PV installation, with good orientation, overall configuration, and minimal rooftop equipment obstruction.

The rooftop array is not capable of offsetting all of the electricity used on site. The rooftop array's first year generation is estimated to offset approximately 51% of the site's current reported electricity consumption. To meet the site's full annual use an additional ground mounted array is required. The site area to the south of the facility and parking lot is well suited for a ground mounted solar array meeting 59% or more of the site's annual electric use. The combined arrays included in this concept can provide an estimated 110.8% of the site's total electric use, making the site Net Zero electricity.

Note: A structural assessment should be conducted to assure the building's ability to support the structural demands of a rooftop array prior to proceeding with project implementation.

Potential Financial Performance The estimated total value of solar PV (potential total economic benefit to the building owner) exceeds the total project cost at a 1.61:1 ratio (1.59 for rooftop, 1.62 for ground). As such, this array should provide payback over its anticipated life span.

Over a 30 year lifespan, the cost per kWh produced by this array is estimated at \$0.003 less than achieving renewable energy for the site through purchase of grid electricity combined with Renewable Energy Credits (RECs).

Improving Financial Performance This array may provide improved cost savings if the City can execute additional energy consumption savings, demand reduction strategies, and explore the addition of energy storage.

Utilization of additional funding sources such as grants, or no/low interest loans could significantly improve the project's financial payback for the building.

In addition, utilization of a 3rd party ownership structure (solar lease or solar PPA) may also increase long-term payback of the solar array and enable the City to leverage a portion of the value of the Investment Tax Credit and Depreciation. NOTE: if pursued 3rd party structure agreement must allow City to retain RECs.

COSTS AND FINANCING (Rooftop Arrav)

Total Installed Array Cost (incl. contingency, other owner expenses)	\$137,231
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$18,952
Operational Expense Allowance (insurance, O+M, 30- year)	\$27,948
Total Lifetime Project Costs	\$184,131

Total Lifetime Project Savings	\$293,587

OUTCOMES

Net Lifetime Project Costs or Savings	\$109,457	63
Total Project Cost Payback (Years)	18.8	Years
Value to Cost Ratio	1.59	to 1.0
Electricity Production (kWh, 30-year)	2,116,685	kWh
Percent of Electricity Usage Covered by Solar (Year	51.60%	

COSTS AND FINANCING (Ground Mounted Array)

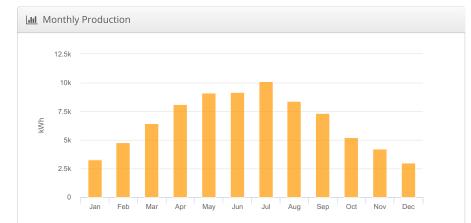
Percent of Electricity Usage Covered by Solar (Year

		-
Total Installed Array Cost (incl. contingency, other owner expenses)	\$155,540	Recommende
Grants, Rebates, No-Obligation Funds	\$0	Site Priority:
Total Interest Payments	\$21,480	
Operational Expense Allowance (insurance, O+M, 30- year)	\$32,204	
Total Lifetime Project Costs	\$209,224	Priority 1 (0-3 year)
SAVINGS		(0.5 year)
Total Lifetime Project Savings	\$338,432	- -
OUTCOMES		
Net Lifetime Project Costs or Savings	\$129,208	
Total Project Cost Payback (Years)	18.5	Years
Value to Cost Ratio	1.62	to 1.0
Electricity Production (kWh, 30-year)	2,427,710	kWh

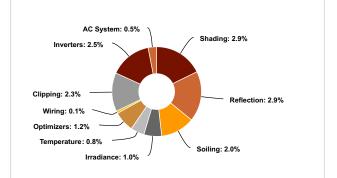
ed

Note, values do not include social cost of carbon avoided by the solar array.

59.18%



Design 2 City of Northfield Fire and Rescue, 301 5th St W, Northfield, MN

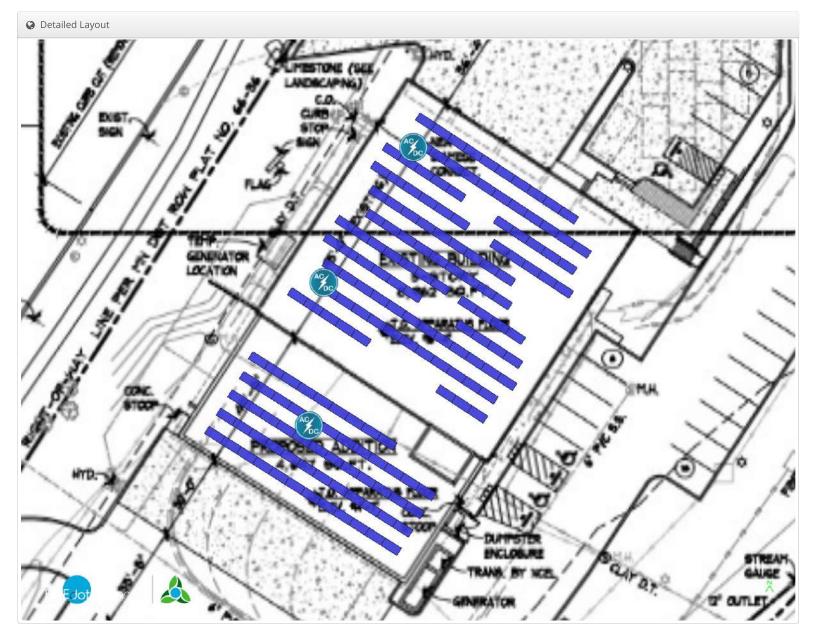

🖋 Report	
Project Name	City of Northfield Fire and Rescue
Project Address	301 5th St W, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

Lill System Metr	ics
Design	Design 2
Module DC Nameplate	59.2 kW
Inverter AC Nameplate	45.0 kW Load Ratio: 1.31
Annual Production	79.08 MWh
Performance Ratio	84.8%
kWh/kWp	1,336.9
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)
Simulator Version	f899f52eda-b47c748d08-a4b7c942ee- 9a23df64f4

• Sources of System Loss

Description Output % Delta Annual Global Horizontal Irradiance 1,394.3 POA Irradiance 1,576.9 13.1% Shaded Irradiance 1,531.5 -2.9% Irradiance (kWh/m²) Irradiance after Reflection 1,486.4 -2.9% Irradiance after Soiling 1,456.6 -2.0% Total Collector Irradiance 1,456.6 0.0% Nameplate 86,077.8 85,179.1 -1.0% Output at Irradiance Levels Output at Cell Temperature Derate 84,499.6 -0.8% Output After Mismatch 84,499.5 0.0% Energy Optimizer Output 83,484.2 -1.2% (kWh) Optimal DC Output 83,371.6 -0.1% Constrained DC Output 81,473.6 -2.3% Inverter Output 79,476.8 -2.5% 79,079.4 -0.5% Energy to Grid **Temperature Metrics** Avg. Operating Ambient Temp 10.1 °C Avg. Operating Cell Temp 16.8 °C Simulation Metrics **Operating Hours** 4673 Solved Hours 4673

Condition Set															
Description	Cond	dition	Set 1												
Weather Dataset	TMY,	10kn	n grid (4	44.	.45,-	-93.1	5), N	IREL	. (pro	spe	ecto	r)			
Solar Angle Location	Mete	eo Lat	/Lng												
Transposition Model	Pere	z Moc	lel												
Temperature Model	Sanc	lia Mc	del												
	Rack	с Туре			а		k	5			Te	mpera	ature D	elta	
Temperature Model Parameters	Fixe	d Tilt			-3.	.56	-	0.07	'5		3°	С			
	Flus	h Moι	unt		-2	.81	-	0.04	155	_	0°	С			
Soiling (%)	J	F	М		A	М		J	J		A	S	0	Ν	D
	2	2	2		2	2		2	2		2	2	2	2	2
Irradiation Variance	5%														
Cell Temperature Spread	4° C														
Module Binning Range	-2.5%	6 to 2.	.5%												
AC System Derate	0.50	%													
Module Characterizations	Mod	ule					Uplo By	ade	d	Cha	rac	terizat	tion		
would characterizations		i-350 (iene li	(Mar18 nc))			Folso Labs					e_72N ar201	1- 8.pan,	PAN	
Component	Devi	ce				l	Uplo	ade	d By		Cł	naract	erizati	on	
Characterizations	P40) NA (SolarE	dge	e)	1	Folso	om l	abs		Μ	fg Spe	ec She	et	
	SE15	5K (So	larEdg	e)		F	Folso	om l	_abs		Sp	bec Sh	neet Ef	ficiency	/


© 2020 Folsom Labs

Annual Production

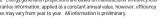
BLUcoo designante

🖨 Compo	nents	
Component	Name	Count
Inverters	SE15K (SolarEdge)	3 (45.0 kW)
Strings	10 AWG (Copper)	6 (387.6 ft)
Optimizers	P400 NA (SolarEdge)	169 (67.6 kW)
Module	Heliene Inc, 72M-350 (Mar18) (350W)	169 (59.2 kW)

🚠 Wiring Z	ones									
Description		Combiner Poles			String Size	2	Stringing St	rategy		
Wiring Zone		12			15-32		Along Rackir	ng		
Field Seg		Orientation	Tilt	Azimuth		Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	26°	213.227°		4.4 ft	1x1	112	112	39.2 kW
Field Segment 2	Fixed Tilt	Landscape (Horizontal)	26°	212.342180	24578126°	4.4 ft	1x1	57	57	20.0 kW

Fire and Rescue 301 5th St W Rooftop Date 6/25/2020

Owner Input & Results Worksheet


The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	2,116,685	kWh
				Total Electricity Bill Savings	\$293,587	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
59.20	Array Size (kW DC)	153,270	Total Annual Electric Use (kWh)	Allowance for annual expenses and financing	g costs excluded	
350	Watt Rating	444.00	Total Annual Demand (kW)	Capital Cost	\$137,231	
169	Number of Solar Modules (Roof)	13,536	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
0	Number of Solar Modules (Ground)	60.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$137,231	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	14.02	Years
45.00	Capacity (kW AC)	11.32	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	113%	EUI as % of National Average	Allowance for annual expenses excluded. Fi	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$11,763.00	Annual Energy Charge (\$)	Financed Capital Cost	\$156,183	
79,080	First Year Generation (kWh)	\$4,224.00	Annual Demand Charge (\$)	Financed Capital Payback	15.96	Years
\$131,065.54	Total Contractor Bid	\$15,987.00	Total Annual Electric Cost	Financed Array Lifetime Payback		
\$0.00	Other Owner Expenses (legal, etc.)	\$0.0767	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and f	inancing costs included.	
\$6,165.07	Owner Contingency (if any)	\$9.51	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$27,948	
\$137,230.61	Total Project Budget	37.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$184,131	
\$2.32	Total Cost Per Watt	Financial	-	Financed Array Lifetime Payback	18.82	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$27,446.12	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1387	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.0870	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0517	
\$4.20	Annual O+M Costs (per kW DC)	\$109,784.49	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.59	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$8,334	Inverter Replacement Cost (Assumes year 20)	10	Loan/Bond Term (assumed)			
		reported rate per kWh.	ectric Use and may differ from utility b be based on EIA Data Browser 10			

): : E:	Fire and Rescue 301 5th St W Rooftop					25-Jun-20 🛔		
	Order of Magnitude Budget - Solar PV Project Public S	ector			DC Nar	neplate Capacity	59.2	1
	Note: Costs are intended to illustrate Order of Magnitude and are preliminary in 2017 national averages provided by the National Renewable Energy Laboratory, cost indices and escalated to 2020 dollars. All information is preliminary				Year 1 Gener	ration Projection	79.1	
	Acres: 0		Cost Indices			Combined 1.10 SUB	PERCENT	Cost
	DESCRIPTION		Quantity	Unit Allow	Project Cost	TOTAL	TOTAL	
	ADMINISTRATION COSTS					\$0	0.00%	\$
	LEGAL, FISCAL & ADMINISTRATIVE		0	2500	\$0			
	LAND AQCUISITION		0	0	\$0			
	LAND SALE - EXISTING STRUCTURES		0	0	\$0			
	SOIL BORINGS		0	4200	\$0			
	SURVEY		0	3500	\$0			
	INSTALLATION COSTS	Watt Rating				\$123,301	89.85%	\$
	PV Modules - Rooftop (Heliene 350W)	350	169	213	\$35,994	•	29.19%	ľ
	PV Modules - Ground Mount (Heliene 350W)	350	0	213	\$0		0.00%	
	PV Modules - Carport/Parking (Heliene 350W)	350	0	213	\$0		0.00%	
	Inverters		1	7247	\$7,247		5.88%	
	Optimizers		169	60	\$10,140		8.22%	
	Structural BOS		1	0	\$0		0.00%	
	Electrical BOS		1	9999	\$9,999		8.11%	
	Racking - Roof		1	10494	\$10,494		8.51%	
	Racking - Ground Mount		1	0	\$0		0.00%	
	Racking - Carport		1	0	\$0		0.00%	
	Sales Tax		1	0	\$0		0.00%	
	Installation Labor		1	9935	\$9,935		8.06%	
	Site Fencing		0	15	\$0		0.00%	
	Site Grading		0	21780	\$0		0.00%	
	Roof Patch/Repair		1	3479	\$3,479		2.82%	
	Building Renovation - Not Included		0	0	\$0		0.00%	
	Haz Mat Removal - Not Included		0	0	\$0		0.00%	
	Permitting, Inspection, Interconnection		1	6512	\$6,512		5.28%	
	Bid Contingency		1	7605	\$7,605		6.17%	
	Overhead		1	10948	\$10,948		8.88%	
	Profit		1	10948	\$10,948		8.88%	
	DEVELOPER OVERHEAD AND PROFESSIONAL FEES					\$7,764	5.66%	\$
	PROCUREMENT MANAGEMENT - Owner's Representative / Procuremer	nt Management			\$0			
	PROCUREMENT MANAGEMENT - Design/Build Package				\$3,083			
	PROCUREMENT MANGEMENT - Utility Project Terms Determination (in	terconnection, proces	s, and tariff)		\$496			
	ENGINEERING - Structural Assessment				\$3,479			
	ENGINEERING - Structural Modifications (not included)				\$0			
	ENGINEERING - Civil Reimbursable Expenses				\$0 \$706			
	······							
	CONTINGENCY					\$6,165	4.49%	\$
	OWNER"S PROJECT CONTINGENCY				\$6,165			ľ

Operation Year 1 2

OWNEI 0 PROJ: Fire and Rescue LOC:: 301 5th 5t W IIILE: koottop 30-Year Energy Output Calcs Note: Energy generation projections are based on manufacturer efficiency loss warrantee information. applied as a constant annual value, however, efficiency losses may vary from year to year. All information is preliminary.

Energy Generation Schedule (Based on Predicted Loss)

DC Nameplate Capa Year 1 Generation Projection (MWH)

Annual Site Energy Use (MWH) Assumed Energy Use During Solar Production Hours

Simplified Cash Flow Projection

lei ation scheut	lie (based on P	redicte	a ros	5)			Potential R	evenue valu	e			Simp	Diffied Cash Flow P	rojection	
						Energy		Estimated							
					Utility	Savings	Utility	Potential			Cash				
			% of		Energy	(Value of	Demand	Demand	Xcel Solar	Total	Investment +				Forecasted
Calendar	Annual Energy	,	1st	% of	Usage Rate	Energy	Charge	Charge	Rewards	Electricity	Loan		Forecasted O+M	Forecasted	Cumulative Cash
Year	Generation	7	Year	Use	(\$/kWh)	Used)		Reduction	Payment	Bill Savings	Payment	Incurance	Costs	Annual Cash Flow	Flow
	79.080	kWh	100%	51.60%	\$0.0767		(annual) \$4.224	\$1.352			(\$40.320)	Insurance		(\$33,384)	
2021	79,080	kWh		51.60%	\$0.0767 \$0.0787	\$6,069	\$4,224 \$4.330	\$1,352 \$1,385	\$0 \$0	\$7,421	(\$12,874)	(\$237)	(\$249)		(\$33,384)
2022		kWh	99%	51.18%	\$0.0787 \$0.0806	\$6,171	\$4,330 \$4,438	\$1,385 \$1,420		\$7,557 \$7.695	(\$12,874)	(\$242)	(\$254)	(\$5,812) (\$5,684)	(\$39,197)
2023	77,820	kWh	98%	50.77%	\$0.0806	\$6,275	\$4,438 \$4,549	\$1,420 \$1,456	\$0 \$0	\$7,695 \$7,836	(\$12,874)	(\$246)	(\$259)		(\$44,880)
2024	77,197 76,580		98% 97%	50.37% 49.96%	\$0.0826	\$6,380 \$6,487		\$1,456 \$1,492	\$0 \$0	\$7,836 \$7,979	(\$12,874)	(\$251)	(\$264)	(\$5,553)	(\$50,433)
2025 2026			97% 96%				\$4,663					(\$256)	(\$269)	(\$5,420)	(\$55,853)
2026	75,967 75,359	kWh	96% 95%	49.56%	\$0.0868 \$0.0890	\$6,596	\$4,779	\$1,529	\$0	\$8,126	(\$12,874)	(\$261)	(\$275)	(\$5,284)	(\$61,137)
				49.17%		\$6,707	\$4,899	\$1,568	\$0	\$8,275	(\$12,874)	(\$267)	(\$280)	(\$5,146)	(\$66,283)
2028	74,756	kWh	95%	48.77%	\$0.0912	\$6,820	\$5,021	\$1,607	\$0	\$8,427	(\$12,874)	(\$272)	(\$286)	(\$5,005)	(\$71,287)
2029	74,158	kWh	94%	48.38%	\$0.0935	\$6,934	\$5,147	\$1,647	\$0	\$8,581	(\$12,874)	(\$277)	(\$291)	(\$4,861)	(\$76,148)
2030	73,565	kWh	93%	48.00%	\$0.0958	\$7,051	\$5,275	\$1,688	\$0	\$8,739	(\$12,874)	(\$283)	(\$297)	(\$4,715)	(\$80,863)
2031	72,977	kWh	92%	47.61%	\$0.0982	\$7,169	\$5,407	\$1,730		\$8,900	\$0	(\$289)	(\$303)	\$8,308	(\$72,555)
2032	72,393	kWh	92%	47.23%	\$0.1007	\$7,290	\$5,542	\$1,774		\$9,063	\$0	(\$294)	(\$309)	\$8,460	(\$64,095)
2033	71,814		91%	46.85%	\$0.1032	\$7,412	\$5,681	\$1,818		\$9,230	\$0	(\$300)	(\$315)	\$8,615	(\$55,481)
2034	71,239	kWh	90%	46.48%	\$0.1058	\$7,537	\$5,823	\$1,863		\$9,400	\$0	(\$306)	(\$322)	\$8,772	(\$46,709)
2035	70,669		89%	46.11%	\$0.1084	\$7,663	\$5,968	\$1,910		\$9,573	\$0	(\$312)	(\$328)	\$8,933	(\$37,776)
2036	70,104	kWh	89%	45.74%	\$0.1112	\$7,792	\$6,118	\$1,958		\$9,750	\$0	(\$319)	(\$335)	\$9,097	(\$28,679)
2037	69,543	kWh	88%	45.37%	\$0.1139	\$7,923	\$6,271	\$2,007		\$9,930	\$0	(\$325)	(\$341)	\$9,263	(\$19,416)
2038	68,987	kWh	87%	45.01%	\$0.1168	\$8,056	\$6,427	\$2,057		\$10,113	\$0	(\$332)	(\$348)	\$9,433	(\$9,983)
2039	68,435	kWh	87%	44.65%	\$0.1197	\$8,192	\$6,588	\$2,108		\$10,300	\$0	(\$338)	(\$355)	\$9,606	(\$376)
2040	67,887	kWh	86%	44.29%	\$0.1227	\$8,329	\$6,753	\$2,161		\$10,490	\$0	(\$345)	(\$8,696)	\$1,449	\$1,072
2041	67,344	kWh	85%	43.94%	\$0.1258	\$8,469	\$6,922	\$2,215		\$10,684	\$0	(\$352)	(\$362)	\$9,970	\$11,042
2042	66,805	kWh	84%	43.59%	\$0.1289	\$8,611	\$7,095	\$2,270		\$10,882	\$0	(\$359)	(\$369)	\$10,153	\$21,196
2043	66,271		84%	43.24%	\$0.1321	\$8,756	\$7,272	\$2,327		\$11,083	\$0	(\$366)	(\$377)	\$10,340	\$31,536
2044	65,741		83%	42.89%	\$0.1354	\$8,903	\$7,454	\$2,385		\$11,288	\$0	(\$373)	(\$384)	\$10,531	\$42,066
2045	65,215	kWh	82%	42.55%	\$0.1388	\$9,053	\$7,640	\$2,445		\$11,498	\$0	(\$381)	(\$392)	\$10,725	\$52,791
2046	64,693	kWh	82%	42.21%	\$0.1423	\$9,205	\$7,831	\$2,506		\$11,711	\$0	(\$388)	(\$400)	\$10,922	\$63,713
2047	64,176	kWh	81%	41.87%	\$0.1458	\$9,359	\$8,027	\$2,569		\$11,928	\$0	(\$396)	(\$408)	\$11,124	\$74,837
2048	63,662	kWh	81%	41.54%	\$0.1495	\$9,517	\$8,228	\$2,633		\$12,150	\$0	(\$404)	(\$416)	\$11,329	\$86,166
2049	63,153	kWh	80%	41.20%	\$0.1532	\$9,677	\$8,433	\$2,699		\$12,375	\$0	(\$412)	(\$424)	\$11,539	\$97,705
2050	62,648	kWh	79%	40.87%	\$0.1571	\$9,839	\$8,644	\$2,766		\$12,605	\$0	(\$421)	(\$433)	\$11,752	\$109,457

Potential Revenue Value

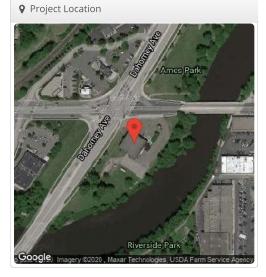
Assumed Percentage of Demand Charge Reduction*: 32.00%

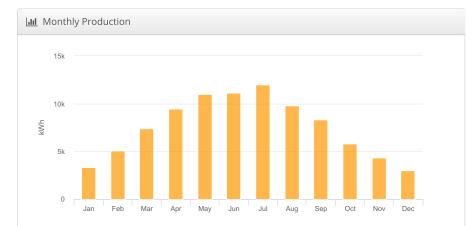
* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3rd of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.nrel.gov/docs/fy17osti/69016.pdf ** Escalation rate recommended to be based on FIA Data Browser 10 year State history: https://www.ela.gov/electricity/data/browser/ Note: All information provided is intended as a good-faith order of magnitude estimation of costs and benefit values. Impacts of potential Investment Tax Incentive or depreciation benefits which may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

Total Installed Array Cost (incl. contingency, other owner expenses)	\$137,231
Grants, Rebates, No-Obligation Funds	\$0
Total Interest Payments	\$18,952
Operational Expense Allowance (insurance, O+M, 30- year)	\$27,948
Total Lifetime Project Costs	\$184,131
SAVINGS	
Total Lifetime Project Savings	\$293,587

COSTS AND FINANCING

OUTCOMES		
Net Lifetime Project Costs or Savings	\$109,457	
Total Project Cost Payback (Years)	18.8	Years
Value to Cost Ratio	1.59	to 1.0
Electricity Production (kWh, 30-year)	2,116,685	kWh
Percent of Electricity Usage Covered by Solar (Year	51.60%	


79. 153.3 60%



Groundmounted City of Northfield Fire and Rescue, 301 5th St W, Northfield, MN


🖋 Report	
Project Name	City of Northfield Fire and Rescue
Project Address	301 5th St W, Northfield, MN
Prepared By	Del McNally bluedotdesignllc@gmail.com

LIII System Metr	rics
Design	Groundmounted
Module DC Nameplate	69.6 kW
Inverter AC Nameplate	55.2 kW Load Ratio: 1.26
Annual Production	90.70 MWh
Performance Ratio	84.1%
kWh/kWp	1,303.6
Weather Dataset	TMY, 10km grid (44.45,-93.15), NREL (prospector)
Simulator Version	f899f52eda-b47c748d08-a4b7c942ee- 9a23df64f4

• Sources of System Loss

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,394.3	
	POA Irradiance	1,550.0	11.2%
rradiance	Shaded Irradiance	1,483.9	-4.3%
kWh/m ²)	Irradiance after Reflection	1,438.4	-3.1%
	Irradiance after Soiling	1,409.6	-2.0%
	Total Collector Irradiance	1,409.8	0.0%
	Nameplate	98,672.2	
	Output at Irradiance Levels	97,761.5	-0.9%
	Output at Cell Temperature Derate	97,123.8	-0.7%
	Output After Mismatch	97,123.7	0.0%
nergy ‹Wh)	Optimizer Output	95,932.8	-1.2%
	Optimal DC Output	95,744.0	-0.2%
	Constrained DC Output	93,072.2	-2.8%
	Inverter Output	91,158.8	-2.1%
	Energy to Grid	90,703.0	-0.5%
emperature M	etrics		
	Avg. Operating Ambient Temp		10.1 °C
	Avg. Operating Cell Temp		16.6 °C
mulation Met	rics		
	0	perating Hours	4673
		Solved Hours	4673

Condition Set												
Description	Con	dition	Set 1									
Weather Dataset	ТМҮ	TMY, 10km grid (44.45,-93.15), NREL (prospector)										
Solar Angle Location	Mete	Meteo Lat/Lng										
Transposition Model	Pere	Perez Model										
Temperature Model	Sand	Sandia Model										
	Rack Type				a b		Temperature Delta					
Temperature Model Parameters	Fixed Tilt				-3.56	-0.0	-0.075		C			
	Flush Mount				2.81	-0.0	-0.0455		0°C			
Soiling (%)	J	F	М	A	М	J	J	А	S	0	Ν	D
	2	2	2	2	2	2	2	2	2	2	2	2
Irradiation Variance	5%											
Cell Temperature Spread	4° C											
Module Binning Range	-2.5%	% to 2	.5%									
AC System Derate	0.50	%										
Module Characterizations	Module				Upload By	led	Characterization					
Module Characterizations		96M 490 (Heliene)			Folsom Labs		Spec Sheet Characterization, PAN				٦,	
	Device					Uploaded By			Characterization			
Component Characterizations	P40	0 NA	(SolarE	dge	:)	Folso	olsom Labs		Mf	g Spec	Sheet	
	SE2	7.6K (SolarE	dge))	Folsom Labs			Spec Sheet			

🖨 Components						
Component	Name	Count				
Inverters	SE27.6K (SolarEdge)	2 (55.2 kW)				
Strings	10 AWG (Copper)	7 (572.9 ft)				
Optimizers	P400 NA (SolarEdge)	142 (56.8 kW)				
Module	Heliene, 96M 490 (490W)	142 (69.6 kW)				

👪 Wiring Zor	nes								
Description		Combiner Poles		Str	ing Size	Stringing	Strategy		
Wiring Zone		12		15	-22	Along Rac	king		
III Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	15°	180°	6.7 ft	2x1	71	142	69.6 kV

S Detailed Layout

Fire and Rescue 301 5th St W Groundmounted Date 6/25/2020

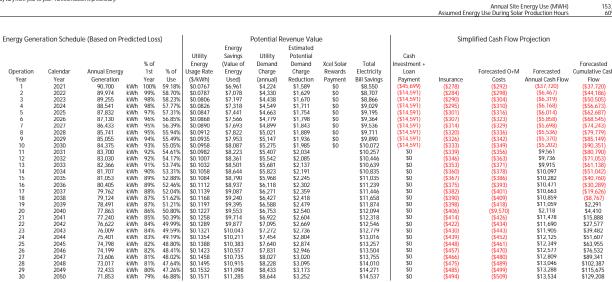
Owner Input & Results Worksheet

The intent of this worksheet is to provide the Site Owner with a tool to explore the long-term energy generation and economic payback for any proposed solar array. To use this worksheet, simply enter the required information in the designated (white) spaces below. Once entered, a summary of results will show to the right. You can proceed to the "30 Year Energy Output sheet for detailed, by year, results.

Information on Your Solar Array (from solar bid)		Information on Your Electric Use (all meters)		Total Production (kWh)	2,427,710	kWh
			_	Total Electricity Bill Savings	\$338,432	
2021	First Year of Operation	Xcel Energy	Electric Utility	Cash Purchase Payback		
69.60	Array Size (kW DC)	153,270	Total Annual Electric Use (kWh)	Allowance for annual expenses and financing	costs excluded	
490	Watt Rating	444.00	Total Annual Demand (kW)	Capital Cost	\$155,540	
0	Number of Solar Modules (Roof)	13,536	Building Area (Square Feet)	Grants, Rebates, No-Obligation Funds	\$0	
142	Number of Solar Modules (Ground)	60.00%	Est % of Elec used between 10am and 3pm	Net Cost	\$155,540	
0	Number of Solar Modules (Carport)	2.50%	Estimated annual electric escalation rate**	Simple Project Payback	13.79	Years
55.20	Capacity (kW AC)	11.32	Electric Use Intensity (kWh/SF)	Financed Purchase Payback		
80.00%	Efficiency Warrantee Level (%)	113%	EUI as % of National Average	Allowance for annual expenses excluded. Fin	nancing costs included	
0.80%	Maximum Annual Production Degradation Rate (%)	\$11,763.00	Annual Energy Charge (\$)	Financed Capital Cost	\$177,020	
90,700	First Year Generation (kWh)	\$4,224.00	Annual Demand Charge (\$)	Financed Capital Payback	15.69	Years
\$146,138.76	Total Contractor Bid	\$15,987.00	Total Annual Electric Cost	Financed Array Lifetime Payback		
\$2,500.00	Other Owner Expenses (legal, etc.)	\$0.0767	Effective Electric Rate (\$/kWh)*	30 year allowance for annual expenses and f	nancing costs included.	
\$6,901.09	Owner Contingency (if any)	\$9.51	Effective Demand Charge (\$/kW)	30 year Operational Expense Allowance (ins/O+M)	\$32,204	
\$155,539.85	Total Project Budget	37.00	Average Monthly Demand (kW)	Financed Array Lifetime Cost	\$209,224	
\$2.23	Total Cost Per Watt	Financial	-	Financed Array Lifetime Payback	18.55	Years
		Information		Net Project Savings (30 year)	\$0	
Information on Your Solar Array		\$31,107.97	Array Cash / Down Payment	Total Electricity Bill Savings Per kWh	\$0.1394	
Operation and		\$0.00	Rebates, Grants, etc.	Project Cost Per Solar Per kWh	\$0.0862	
Maintenance (from solar bid)		\$0.00	Other no-obligation funds	Net Electricity Bill Savings Per kWh	\$0.0532	
\$4.20	Annual O+M Costs (per kW DC)	\$124,431.88	Remaining Array Cost Requiring Financing	Value to Cost Ratio	1.62	to 1.0
2.00%	O+M Annual Escalation Rate					
\$4.00	Annual Insurance Costs (per kW DC)	3.25%	Loan / Bond Interest Rate (6 year)			
\$9,144	Inverter Replacement Cost (Assumes year 20)	10	Loan/Bond Term (assumed)			
		reported rate per kWh.	ectric Use and may differ from utility b be based on EIA Data Browser 10			

J: .: E:	Fire and Rescue 301 5th St W Groundmounted					25-Jun-20		
	Order of Magnitude Budget - Solar PV Project Public Sector			DC Nam	eplate Capacity	69.6	l	
	Note: Costs are intended to illustrate Order of Magnitude and are preliminary in nature. Cost 2017 national averages provided by the National Renewable Energy Laboratory, modified usi cost indices and escalated to 2020 dollars. All information is preliminary				Year 1 Generation Projection		90.7	
	Acres: 0		Cost Indices	Material 1.10		ombined .10 SUB	PERCENT	Car
	DESCRIPTION		Quantity	Unit Allow	Project Cost	TOTAL	TOTAL	
	ADMINISTRATION COSTS					\$2,500	1.61%	
	LEGAL, FISCAL & ADMINISTRATIVE		1	2500	\$2,500	+_,		l.
	LAND AOCUISITION		0	0	\$0			i.
	LAND SALE - EXISTING STRUCTURES		0	0	\$0			l
	SOIL BORINGS		0	4200	\$0			l
	SURVEY		0	3500	\$0			l
	INSTALLATION COSTS Watt Ratin	ng				\$138,022	88.74%	
	PV Modules - Rooftop (Heliene 350W)	490	0	276	\$0	•••••	0.00%	l.
	PV Modules - Ground Mount (Heliene 350W)	490	142	276	\$39,157		28.37%	J
	PV Modules - Carport/Parking (Heliene 350W)	490	0	276	\$0		0.00%	i.
	Inverters		1	7951	\$7,951		5.76%	J
	Optimizers		142	60	\$8,520		6.17%	i.
	Structural BOS		1	0	\$0		0.00%	i.
	Electrical BOS		1	11073	\$11,073		8.02%	i.
	Racking - Roof		1	0	\$0		0.00%	l I
	Racking - Ground Mount		1	13252	\$13,252		9.60%	i.
	Racking - Carport		1	0	\$0		0.00%	1
	Sales Tax		1	0	\$0		0.00%	l
	Installation Labor		1	10543	\$10,543		7.64%	l
	Site Fencing		496	15	\$7,440		5.39%	l
	Site Grading		0	21780	\$0		0.00%	l
	Roof Patch/Repair		1	0	\$0		0.00%	l
	Building Renovation - Not Included		0	0	\$0		0.00%	i.
	Haz Mat Removal - Not Included		0	0	\$0		0.00%	l
	Permitting, Inspection, Interconnection		1	7656	\$7,656		5.55%	l
	Bid Contingency		1	8562	\$8,562		6.20%	i.
	Overhead		1	11934	\$11,934		8.65%	l
	Profit		1	11934	\$11,934		8.65%]
	DEVELOPER OVERHEAD AND PROFESSIONAL FEES					\$8,117	5.22%	
	PROCUREMENT MANAGEMENT - Owner's Representative / Procurement Manageme	ent			\$0			l.
	PROCUREMENT MANAGEMENT - Design/Build Package				\$3,451			i.
	PROCUREMENT MANGEMENT - Utility Project Terms Determination (interconnection	n, proces	s, and tariff)		\$429			i.
	ENGINEERING - Structural Assessment				\$0			i.
	ENGINEERING - Structural Modifications (not included)				\$0			l
	ENGINEERING - Civil				\$3,500			l
	Reimbursable Expenses				\$738			
	CONTINCTICY					<i>tc</i> 00-		
	CONTINGENCY OWNER'S PROJECT CONTINGENCY				\$6,901	\$6,901	4.44%	l
					JU, 201			l

PROJ: Fire and Rescue LOC.: 301 5th St W IIILE: Groundmounted


Operation

Year

5

30-Year Energy Output	Calcs
Note: Energy generation project	tions are based on manufacturer efficiency loss
warrantee information, applied	as a constant annual value, however, efficiency
losses may vary from year to yea	 All information is preliminary.

Calendar

\$0 \$0	(\$457) (\$466)	(\$470) (\$480)	\$12,577 \$12,809	\$76,532 \$89.341
\$0	(\$475)	(\$489)	\$13,046	\$102.387
\$0	(\$485)	(\$499)	\$13,288	\$115,675
\$0	(\$494)	(\$509)	\$13,534	\$129,208
COSTS AND F	NANCING			
		ontingency, other	\$155,540	
owner expenses	,			-
	, No-Obligation F	unds	\$0	-
Total Interest Pa	ayments		\$21,480	-
Operational Exp year)	ense Allowance (\$32,204		
Total Lifetime Pr	roject Costs	\$209,224		
SAVINGS				_
Total Lifetime Pi	roject Savings		\$338,432	
OUTCOMES				_
Net Lifetime Pro	ject Costs or Sav	ings	\$129,208	_
Total Project Co	st Payback (Years)	18.5	Years
Value to Cost Ra	itio		1.62	to 1.0
Electricity Produ	iction (kWh, 30-y	ear)	2,427,710	kWh
Percent of Elect	ricity Usage Cove	red by Solar (Year	59.18%	
				-

(\$9,570 (\$426) (\$434) (\$443) (\$452)

(\$461) (\$470) (\$480)

(\$406) (\$414) (\$422) (\$430) (\$439)

(\$439) (\$448) (\$457) (\$466)

* Estimated Demand Charge Reduction assumes potential reduction of total demand charge based on possible demand service direct from solar array. The value is based on the array capacity's percentage of the average demand, multiplied by 30% reflecting an assumption that 1/3/d of the operating months will have solar capacity to meet demand peak. For more information see NREL report: https://www.mel.gov/docs/fy17ostl/69016.pdf

Charge Reduction*: 37.62%

% of

Annual Energy

Generation 90,704 89,974 88,974 88,541 87,833 86,441 87,833 86,4431 85,741 85,055 83,700 84,305 83,000 84,305 83,000 84,305 83,000 84,305 79,762 70,762 70,7

Assumed Percentage of Demand

Examination of depreciation bench made by provide the provided in the incentive or depreciation bench swhich may be leveraged through 3rd party engagement may not all be included in these calculations. Please consult investment and tax professionals for a more detailed and accurate projection of benefits.

https://www.net.gov/docs/r/froad/softpain/ ** Escalation rate recommended to be based on EIA Data Browser 10 year State history. https://www.eia.gov/electricity/data/browser/ Note: All information provided is intended as a good-faith order of magnitude estimation of costs and benefit values. Impacts of potential Investment Tax

\$10.383

\$10,557 \$10,735

\$10,915 \$11,098 \$11,285

\$7,640 \$7,831 \$8,027

\$8,228 \$8,433 \$8,644

\$2,804 \$2,874 \$2,946 \$3,020

\$3,095 \$3,173 \$3,252

\$10,663 \$10,859 \$11,059 \$2,118 \$11,478 \$11,690 \$11,905 \$12,125 \$12,349 \$12,577 \$12,809

90.

153.3 60%

Flow (\$37,720) (\$44,186) (\$50,505)

(\$8,767) \$2,291 \$4,410 \$15,888 \$27,577 \$39,482 \$51,607 \$63,955 \$76,532 \$89,341 \$102,387

DC Nameplate Cap Year 1 Generation Projection (MWH)

Prepared by:

2515 White Bear Ave, A8 Suite 177 Maplewood, MN 55109

Contact: Ted Redmond tredmond@paleBLUEdot.llc